1
|
Chen Q, Fan R, Deng X, Chen J, Wang W, Yan Q, Chen FE. Visible-Light-Induced Markovnikov Hydroalkoxylation of α-Trifluoromethyl Alkenes with ortho-Diketones. J Org Chem 2024; 89:18571-18584. [PMID: 39642191 DOI: 10.1021/acs.joc.4c02519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (Et3N), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF3 alkene via a single electron transfer. Notably, this protocol features several advantages including metal- and external photocatalyst-free, mild conditions, easy operation, a broad substrate scope, and good functional group tolerance. Moreover, by applying this new method, a great number of important deuterium-labeled organofluorine compounds can be readily prepared using CD3OD as a deuterium source.
Collapse
Affiliation(s)
- Qinlin Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xinhao Deng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jinxiu Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
3
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Al Zubaydi S, Onuigbo IO, Truesdell BL, Sevov CS. Cobalt-Catalyzed Electroreductive Alkylation of Unactivated Alkyl Chlorides with Conjugated Olefins. Angew Chem Int Ed Engl 2024; 63:e202313830. [PMID: 37963333 DOI: 10.1002/anie.202313830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Reactions of unactivated alkyl chlorides under mild and sustainable conditions are rare compared to those of alkyl bromides or iodides. As a result, synthetic methods capable of modifying the vast chemical space of chloroalkane reagents, wastes, and materials are limited. We report the cobalt-catalyzed reductive addition of unactivated alkyl chlorides to conjugated alkenes. Co-catalyzed activation of alkyl chlorides is performed under electroreductive conditions, and the resulting reactions constitute formal alkyl-alkyl bond formation. In addition to developing an operationally simple methodology, detailed mechanistic studies provide insights into the elementary steps of a proposed catalytic cycle. In particular, we propose a switch in the mechanism of C-Cl bond activation from nucleophilic substitution to halogen atom abstraction, which is critical for efficiently generating alkyl radicals. These mechanistic insights were leveraged in designing ligands that enable couplings of primary, secondary, and tertiary alkyl chlorides.
Collapse
Affiliation(s)
- Samir Al Zubaydi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Immaculata O Onuigbo
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Blaise L Truesdell
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
6
|
Hoogesteger RH, Murdoch N, Cordes DB, Johnston CP. Cobalt-Catalyzed Wagner-Meerwein Rearrangements with Concomitant Nucleophilic Hydrofluorination. Angew Chem Int Ed Engl 2023; 62:e202308048. [PMID: 37409777 DOI: 10.1002/anie.202308048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We report a cobalt-catalyzed Wagner-Meerwein rearrangement of gem-disubstituted allylarenes that generates fluoroalkane products with isolated yields up to 84 %. Modification of the counteranion of the N-fluoropyridinium oxidant suggests the substrates undergo nucleophilic fluorination during the reaction. Subjecting the substrates to other known metal-mediated hydrofluorination procedures did not lead to observable 1,2-aryl migration. Thus, indicating the unique ability of these cobalt-catalyzed conditions to generate a sufficiently reactive electrophilic intermediate capable of promoting this Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Reece H Hoogesteger
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Nicola Murdoch
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Craig P Johnston
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|