1
|
He XC, Gao J, Yang L, Chen K, Yang H. Nickel/Photoredox Dual-Catalyzed, Regioselective 1,2-Carboacylation of Alkenes via Synergistic Alkyl and Benzoyl Radical Coupling. Org Lett 2025; 27:4933-4939. [PMID: 40314256 DOI: 10.1021/acs.orglett.5c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A regioselective 1,2-carboacylation protocol of alkenes via nickel/photoredox dual catalysis has been successfully developed under mild conditions. A wide range of alkyl bromides, α-oxocarboxylic acids, and styrenes proved to be compatible under the optimized conditions, affording the corresponding 1,2-carboacylation products in up to 91% yields. Mechanistically, the key to the success of this approach is the temporal orchestration of radical generation: nickel-catalyzed halogen atom transfer (XAT) for alkyl bromides and photoredox-driven decarboxylation for α-oxocarboxylic acids.
Collapse
Affiliation(s)
- Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Niu L, Jin S, Zhu M, Wang L, Wang D. Three-Component 1,2-Carboalkynylation of Alkenes Via Cooperative Nickel/Photoredox Catalysis. Org Lett 2025; 27:3183-3187. [PMID: 40125835 DOI: 10.1021/acs.orglett.5c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A photoredox/nickel dual catalytic system was developed for the three-component 1,2-carboalkynylation of alkenes. This redox-neutral protocol enables the efficient and divergent synthesis of aliphatic alkynes in high yields with excellent regioselectivity, using readily available starting materials. The resulting adducts can be readily transformed into terminal alkynes, facilitating diverse downstream transformations. Mechanistic studies were performed to elucidate the preferred pathway of this alkene difunctionalization process.
Collapse
Affiliation(s)
- Lujing Niu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Shengzhou Jin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Meiqi Zhu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
4
|
Li WF, Xu QH, Miao QY, Xiao B. Dual Photoredox/Nickel Catalysis Enables Diastereoselective Synthesis of Multisubstituted γ-Lactams Using Alkyl-GeMe 3 as Radical Precursors. J Org Chem 2024; 89:16269-16281. [PMID: 38323758 DOI: 10.1021/acs.joc.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein, we report a single-step, multicomponent approach to versatile γ-lactams through dual photoredox/nickel-catalyzed dicarbofunctionalization of α,β-unsaturated γ-butyrolactam. This reaction utilized alkyl trimethylgermanium as a radical precursor and acyl chloride as the electrophile, demonstrating remarkable functional group compatibility.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Hao Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Yue Miao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Pan XH, Shi CX, Hou YP, Wang LF, Niu RQ, Guo L. anti-Selective Carboacylation of Alkynes via Photoredox/Nickel Dual Catalysis. Org Lett 2024; 26:9498-9502. [PMID: 39479895 DOI: 10.1021/acs.orglett.4c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Here, we report an intermolecular carboacylation of terminal alkynes with tertiary and secondary alkyltrifluoroborates as well as acyl chlorides via photoredox/nickel dual catalysis, affording a varity of stereodefined trisubstituted enones in good to excellent yields and E stereoselectivity, through a radical relay process. This redox-neutral protocol exhibits excellent functional group tolerance, exclusive regio- and stereoselectivity, and broad compatibility with various acyl chlorides and alkyltrifluoroborates.
Collapse
Affiliation(s)
- Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chang-Xin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Li-Fang Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Rui-Qi Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
6
|
Jin S, Wang L, Jia Y, Ma W, Wang D. Nickel-Catalyzed Three-Component 1,2-Carboacylation of Alkenes. Molecules 2024; 29:4295. [PMID: 39339290 PMCID: PMC11433782 DOI: 10.3390/molecules29184295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Ketones, prevalent in many biologically significant molecules, require the development of novel methods to synthesize these structures, which is a critical endeavor in organic synthesis. Transition metal catalysis has proven to be an effective method for synthesizing ketones. However, the scope of these substrates remains relatively limited, particularly due to their incompatibility with sensitive functional groups. Herein, we report a Ni-catalyzed three-component 1,2-carboacylation of alkenes, which activates secondary/tertiary alkyl bromides. This method offers significant advantages: simplicity of operation, ready availability of substrates, and broad substrate applicability. A series of experimental studies have helped clarify the key mechanistic pathways involved in this cascade reaction.
Collapse
Affiliation(s)
- Shengzhou Jin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yinggang Jia
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Wenbo Ma
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, National Base for International Science and Technology Cooperation of Chengdu University, Chengdu University, Chengdu 610106, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
7
|
Pan XH, Hou YP, Shi CX, Wang YP, Niu RQ, Guo L. Intermolecular Regioselective Alkylarylation of Vinylarenes via Photoredox/Nickel Dual Catalysis. Org Lett 2024; 26:7291-7296. [PMID: 39172514 DOI: 10.1021/acs.orglett.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A novel photoredox/nickel dual catalytic intermolecular alkylarylation of vinylarenes with tertiary and secondary alkyltrifluoroborates and aryl bromides is described, which affords 1,1-diarylalkane frameworks that are found in various natural products as well as functionalized molecules in good to excellent yield and regioselectivity through a radical relay process. Notably, this redox-neutral reaction could proceed efficiently with good tolerance of various substrates, including a great diversity of commercially available (hetero)aryl bromides, alkyltrifluoroborates, and vinylarenes.
Collapse
Affiliation(s)
- Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chang-Xin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Wang
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201408, China
| | - Rui-Qi Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
8
|
Kommoju A, Snehita K, Sowjanya K, Mukkamala SB, Padala K. Recent advances in dual photoredox/nickel catalyzed alkene carbofunctionalised reactions. Chem Commun (Camb) 2024; 60:8946-8977. [PMID: 39086201 DOI: 10.1039/d4cc02914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Alkene carbofunctionalization reactions have great potential for synthesizing complex molecules and constructing complex structures in natural products and medicinal chemistry. Recently, dual photoredox/nickel catalysis has emerged as a novel strategy for alkene carbofunctionalization. Nickel offers numerous advantages over other transition metals, such as cost-effectiveness, abundance, and low toxicity, and moreover, it has many oxidation states. Nickel catalysts exhibit excellent catalytic activity in dual photoredox/transition metal catalysis, facilitating the formation of carbon-carbon or carbon-heteroatom bonds in organic transformations. This review highlights the latest advancements in dual photoredox/nickel-catalyzed alkene carbofunctionalizations and includes the literature published from 2020 to 2024.
Collapse
Affiliation(s)
- Anilkumar Kommoju
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kattamuri Snehita
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kandi Sowjanya
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Saratchandra Babu Mukkamala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| |
Collapse
|
9
|
Wang T, Guan Y, Zhang T, Liang Y. Ligand Relay for Nickel-Catalyzed Decarbonylative Alkylation of Aroyl Chlorides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306923. [PMID: 38088530 PMCID: PMC10916626 DOI: 10.1002/advs.202306923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
Transition metal-catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late-stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel-catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross-electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late-stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.
Collapse
Affiliation(s)
- Tian‐Zhang Wang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Qiu Guan
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Tian‐Yu Zhang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Feng Liang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
10
|
Wang W, Shen C, Zhang L, Dong K. Synthesis of Chiral α-Aryl Ketones by Photoredox/Nickel-Catalyzed Enantioconvergent Acyl Cross-Coupling with Organotrifluoroborate. Org Lett 2024; 26:850-854. [PMID: 38251833 DOI: 10.1021/acs.orglett.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoredox/nickel-catalyzed enantioconvergent acyl cross-coupling of carboxylic derivatives with racemic secondary organotrifluoroborate was developed for the synthesis of an enolizable chiral α-aryl ketone under mild neutral conditions. Moderate to high yields and good enantioselectivities were achieved.
Collapse
Affiliation(s)
- Weichen Wang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Linli Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Kennedy-Ellis JJ, Kelleher AD, Sayeed JA, Burde AS, Chemler SR. Enantioenriched Allylesters via a Copper-Catalyzed Diene Carboesterification with Alkyltrifluoroborates and Carboxylic Acids. J Org Chem 2024; 89:1256-1263. [PMID: 38194284 PMCID: PMC11097674 DOI: 10.1021/acs.joc.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The rapid synthesis of a range of enantioenriched allylic esters is enabled by a new 3-component catalytic enantioselective 1,2-carboesterification of readily available dienes with carboxylic acids and potassium alkyltrifluoroborates. The chiral copper catalyst, formed in situ from Cu(OTf)2 and (4S,4'S)-2,2'-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole), is implicated in both the generation of alkyl radicals from the alkyltrifluoroborates as well as the enantioselective formation of C-O bonds. Potassium salts of primary and secondary alkyltrifluoroborates as well as several benzylic trifluoroborates, tert-butyltrifluoroborate, and phenyltrifluoroborate participate in the reaction. The regioselectivity and enantioselectivity are strongly impacted by variations in all of the reaction components, which in turn are thought to impact the C-O bond-forming reductive elimination from a [Cu(III)] intermediate.
Collapse
Affiliation(s)
- Jonathan J Kennedy-Ellis
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Alexis D Kelleher
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Jaffer A Sayeed
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ameya S Burde
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R Chemler
- Chemistry Department, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Fan P, Chen Z, Wang C. Nickel/Photo-Cocatalyzed Three-Component Alkyl-Acylation of Aryl-Activated Alkenes. Org Lett 2023. [PMID: 38048426 DOI: 10.1021/acs.orglett.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we disclose a nickel/photo-cocatalyzed three-component alkyl-acylation of aryl-substituted alkenes with aldehydes and electron-withdrawing-group-activated alkyl bromides, providing straightforward access to various ketones under mild and ligand-free conditions. The photocatalyst TBADT plays a dual role in activating the acyl C-H bond of aldehydes via hydrogen atom transfer and reducing the C-Br bond of alkyl bromides via single-electron transfer. While the terminal C-C bond is forged through polarity-matched radical-type addition, nickel is likely involved in the acylation step.
Collapse
Affiliation(s)
- Pei Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Zhe Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Kim J, Müller S, Ritter T. Synthesis of α-Branched Enones via Chloroacylation of Terminal Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309498. [PMID: 37786992 DOI: 10.1002/anie.202309498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
Collapse
Affiliation(s)
- Jungwon Kim
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Müller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Mohar M, Ghosh S, Hajra A. Visible Light Induced Three-Component 1,2-Dicarbofunctionalization of Alkenes and Alkynes. CHEM REC 2023; 23:e202300121. [PMID: 37309268 DOI: 10.1002/tcr.202300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Harnessing visible-light in organic synthesis is one of the most effective methods that aligns with green and sustainable chemistry principles and hence skyrocketed in the last two decades. Similarly, three-component 1,2-dicarbofunctionalization of alkenes and alkynes has recently been a great choice to construct complex molecular systems in an easy and rapid manner. Therefore, light-induced reactions can be an excellent alternative to carry out 1,2-dicarbofunctionalization reactions, and very recently, organic chemists across the globe have fascinated us with their interesting articles. In this present review, we have summarized the recent advancements in the area of visible light induced three-component 1,2-dicarbofunctionalization of alkenes and alkynes till March 2023. We have categorized the discussion based on the catalysts used to carry out the transformations for better understanding and different important aspects of these transformations have also been covered.
Collapse
Affiliation(s)
- Mrittika Mohar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
15
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
16
|
Li J, Cao C, Wu H, Dong K. Nickel/Titanocene-Catalyzed Electrophilic Acylation Coupling of Styrene Oxides. Org Lett 2023; 25:6959-6963. [PMID: 37726896 DOI: 10.1021/acs.orglett.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The cross-coupling of epoxides with acyl chlorides or anhydrides by a nickel/titanocene dual catalytic system is established. A variety of synthetically useful β-hydroxy ketones were obtained in good to high yields by using modified pyridine-oxazoline ligand. The reaction proceeds via the cooperation of titanocene-catalyzed ring-opening of epoxides and nickel-catalyzed acylation of the benzylic radical intermediate.
Collapse
Affiliation(s)
- Jincan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|