1
|
Feng Q, Zhou Y, Xu H, Liu J, Wan Z, Wang Y, Yang P, Ye S, Zhang Y, Cao X, Cao D, Huang H. BN-embedded aromatic hydrocarbons: synthesis, functionalization and applications. Chem Soc Rev 2025. [PMID: 40392597 DOI: 10.1039/d5cs00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Substituting CC double bonds with B-N bonds in polycyclic aromatic hydrocarbons (PAHs) has emerged as a promising approach to advance and diversify organic functional materials. This structural modification not only imparts unique electronic and optical properties, but also enhances chemical stability, thereby opening new avenues for material design and applications. However, the widespread adoption of BN-fused aromatic hydrocarbons in practical applications is still in its nascent phase. This constraint stems primarily from the challenges in precisely tailoring molecular structures to optimize photophysical and electronic properties, thereby influencing their efficacy in targeted applications. Consequently, a comprehensive evaluation of historical, current, and prospective developments in BN-fused aromatic hydrocarbons is deemed essential. This review offers an in-depth overview of recent advancements in BN-fused aromatic hydrocarbons, focusing on synthetic strategies, fundamental properties, and emerging applications. Additionally, we elucidate the pivotal role of computational chemistry in directing the design, discovery, and optimization of these materials. Our objective is to foster interdisciplinary collaboration and stimulate innovative approaches to fully harness the potential of azaborinine chemistry across various fields, including organic optoelectronics, biomedicine, and related disciplines.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Jianhua Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Zicheng Wan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Shan Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yiding Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| |
Collapse
|
2
|
Scholz AS, Massoth JG, Stoess L, Bolte M, Braun M, Lerner HW, Mewes JM, Wagner M, Froitzheim T. NBN- and BNB-Phenalenyls: the Yin and Yang of Heteroatom-doped π Systems. Chemistry 2024; 30:e202400320. [PMID: 38426580 DOI: 10.1002/chem.202400320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Julian G Massoth
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Lennart Stoess
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Markus Braun
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-M Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
3
|
Scholz AS, Bolte M, Virovets A, Peresypkina E, Lerner HW, Anstöter CS, Wagner M. Tetramerization of BEB-Doped Phenalenyls to Obtain (BE) 8-[16]Annulenes (E = N, O). J Am Chem Soc 2024; 146:12100-12112. [PMID: 38635878 DOI: 10.1021/jacs.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Eugenia Peresypkina
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, EH8 9YLEdinburgh,U.K
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Zeng JC, Zhao K, Zhang PF, Zhuang FD, Ding L, Yao ZF, Wang JY, Pei J. Assessing the Role of BN-Embedding Position in B 2N 2-Perylenes. Chemistry 2024; 30:e202304372. [PMID: 38191767 DOI: 10.1002/chem.202304372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Incorporating heteroatoms can effectively modulate the molecular optoelectronic properties. However, the fundamental understanding of BN doping effects in BN-embedded polycyclic aromatic hydrocarbons (PAHs) is underexplored, lacking rational guidelines to modulate the electronic structures through BN units for advanced materials. Herein, a concise synthesis of novel B2N2-perylenes with BN doped at the bay area is achieved to systematically explore the doping effect of BN position on the photophysical properties of PAHs. The shift of BN position in B2N2-perylenes alters the π electron conjugation, aromaticity and molecular rigidness significantly, achieving substantially higher electron transition abilities than those with BN doped in the nodal plane. It is further clarified that BN position dominates the photophysical properties over BN orientation. The revealed guideline here may apply generally to novel BN-PAHs, and aid the advancement of BN-PAHs with highly-emissive performance.
Collapse
Affiliation(s)
- Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kexiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Liu Y, Zhou S, Liu Z. Synthesis, structure, photophysical property, stability of tetraphenylethylene-based boranil, and applications in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123730. [PMID: 38061107 DOI: 10.1016/j.saa.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
A new family of tetraphenylethylene-based N,O-chelated boranil complexes (TPE-BAs) with aggregation-induced emission (AIE) characteristics were developed. X-ray crystallographic analysis indicated that the terminal substituents on the aniline moiety significantly affected the intermolecular stacking mode, thereby influencing the photophysical properties. The stabilities of these compounds are closely related to the substituents on the aniline moiety. Electron-donor-substituted TPE-BA-OMe exhibited the best stability, whereas the electron-acceptor-substituted compounds exhibited poor stability. Benefitting from its AIE properties and suitable lipophilicity, TPE-BA-OMe served as an excellent fluorescent probe for the specific bioimaging of lipid droplets in living cells.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
6
|
Vaithiyanathan V, Sivaraman S. Eco-friendly K-10 Clay-Mediated [3 + 3] Spiroannulation of Morita-Baylis-Hillman Adduct of Isatin with Anthracene: Synthesis of Green Fluorophore Compounds. ACS OMEGA 2024; 9:934-941. [PMID: 38222519 PMCID: PMC10785619 DOI: 10.1021/acsomega.3c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
An easy and simple spiroannulation of the Morita-Baylis-Hillman adduct of isatin derivatives with anthracene was achieved in moderate-to-good yields (37-75%). The spiroderivatives synthesized in this work exhibited green fluorescence properties. The reaction occurred in metal-free eco-friendly K-10 clay-mediated conditions. The final products have multiple structural features such as 3-spirooxindole, fluorophoric anthracene, phenanthracene, phenalene, and perylene cores.
Collapse
Affiliation(s)
- Vadivel Vaithiyanathan
- Department
of Chemistry, Arignar Anna Govt. Arts College,
(Re-accredited by the NAAC with “B+” and Affiliated
to Annamalai University, Chidambaram), Villupuram 605 602, Tamilnadu
| | - Sivaprakasam Sivaraman
- Department
of Chemistry, Arignar Anna Govt. Arts College,
(Re-accredited by the NAAC with “B+” and Affiliated
to Annamalai University, Chidambaram), Villupuram 605 602, Tamilnadu
| |
Collapse
|
7
|
Ma T, Dong J, Yang DT. Heteroatom-boron-heteroatom-doped π-conjugated systems: structures, synthesis and photofunctional properties. Chem Commun (Camb) 2023; 59:13679-13689. [PMID: 37901914 DOI: 10.1039/d3cc04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.
Collapse
Affiliation(s)
- Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, 430056 Wuhan, China
| |
Collapse
|