1
|
Biswas S, Trevino R, Fremin SO, Sanchez-Palestino LM, Dhungana BR, Porey A, Hughes WB, Arman HD, Larionov OV, Doyle MP. Photolytic Access to Oxaspirodecanes and Chromenes from Vinyldiazo Ester Cycloaddition with p-Quinones: A Vinylcarbene Is Not Involved. J Am Chem Soc 2025; 147:12308-12317. [PMID: 40138625 DOI: 10.1021/jacs.5c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Synthetic methods that provide access to skeletally diverse heterocyclic motifs are poised to accelerate drug discovery and streamline the synthesis of advanced intermediates and materials. However, the development of such synthetic methods necessitates leveraging previously unexplored mechanistic pathways. We report herein an efficient blue light-emitting diode light-induced reaction of vinyldiazoacetates and quinones that produces spirocyclic dihydrofurans, featuring the synthetically challenging oxaspiro[4,5]decane core of numerous medicinal agents, agrochemicals, and natural products. In a departure from the well-established photochemical reactivity of diazo compounds, these reactions do not involve vinylcarbene intermediates formed by photolytic dinitrogen extrusion. Instead, they result from photoexcitation of the quinone to its triplet state with subsequent triplet energy transfer to the vinyldiazo ester. The subsequent addition of the vinylogous carbon of the triplet vinyldiazoacetate to the quinone oxygen affords the triplet diradical that collapses to the spirocyclic dihydrofuran upon the loss of dinitrogen. A strain release-driven and Bro̷nsted acid-catalyzed rearrangement of the spirocyclic products unravels the fused bicyclic ring system of equally synthetically and medicinally valuable chromenes, enabling facile skeletal diversification of the important heterocyclic motifs.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | - Babu Raj Dhungana
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
2
|
Zhao KH, Qi JM, Hu XM, Li YD, Huang R, Yan SJ. Cycloaddition and Skeleton Rearrangement of Heterocyclic Ketene Aminals (HKAs) with 1-Diazonaphthalen-2(1 H)-ones for the Synthesis of Functionalized 1,2,3-Triazoles. Org Lett 2024; 26:6866-6871. [PMID: 39093330 DOI: 10.1021/acs.orglett.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.
Collapse
Affiliation(s)
- Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jin-Mei Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Tao M, Qian J, Chen Z, An LK, Wilson DM, Liu J. General Synthesis of N-CF 3 Heteroaryl Amides via Successive Fluorination and Acylation of Sterically Hindered Isothiocyanates. J Org Chem 2023; 88:15237-15248. [PMID: 37823733 DOI: 10.1021/acs.joc.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We report the one-pot synthesis of N-CF3 heteroaryl amides (NTFMHA) from heteroaryl carboxylic acids and sterically hindered isothiocyanates, including various amino acid analogues, in the presence of AgF. The key to this reaction is the utilization of free heteroaryl acyl chlorides, rather than their corresponding hydrochloride salts. This method represents a complementary method of our previous work and enables modification to a variety of previously inaccessible structures, including α-tertiary amines and N-CF3-modified pharmaceuticals.
Collapse
Affiliation(s)
- Min Tao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Jiasheng Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jianbo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
6
|
Zhang Y, Han B, Gu X, Wang K, Liang S. Mn(OAc) 3-Promoted Sulfonation- ipso-Cyclization Cascade via the SO 3- Radical: The Synthesis of Spirocyclic Sulfonates. J Org Chem 2023; 88:14140-14155. [PMID: 37718492 DOI: 10.1021/acs.joc.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A radical sulfonation-ipso-cyclization cascade promoted by Mn(OAc)3·2H2O using functionalized alkynes or alkenes and potassium metabisulfite (K2S2O5) is reported. A total of 30 spirocyclic sulfonates were synthesized under mild conditions. We also demonstrate a modular synthesis approach in multiple steps for the preparation of various azaspiro[4,5]-trienone-based sulfonamides and sulfonate esters.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaixuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
7
|
Hussain Y, Empel C, Koenigs RM, Chauhan P. Carbene Formation or Reduction of the Diazo Functional Group? An Unexpected Solvent-Dependent Reactivity of Cyclic Diazo Imides. Angew Chem Int Ed Engl 2023; 62:e202309184. [PMID: 37506274 DOI: 10.1002/anie.202309184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|