1
|
Xie Y, Su G, Ishida M, Zhu B, Baryshnikov G, Sha F, Li C, Wu X, Ågren H, Furuta H, Li Q. Dimerization of Hexaphyrin with an Appendant Pyrrole Possessing a Reactive Site to Alleviate the Steric Hindrance. J Am Chem Soc 2025; 147:5368-5376. [PMID: 39888939 DOI: 10.1021/jacs.4c17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Oxidative dimerization of π-conjugated molecules is a straightforward approach for effectively extending π-conjugation and absorption features. However, it is challenging to construct dimeric species of bulky π-conjugated frameworks because of the steric hindrances and/or poor regioselectivity. To address these issues, a pyrrole unit has been regioselectively appended to the α position of N-confused hexaphyrin (1.1.1.1.1.0) 1 by a facile acid-catalyzed condensation reaction, leading to the formation of pyrrole-appendant 2. Subsequent oxidation of 2 yielded an inner-fused monomer 2F and two fused dimeric species, namely, (2F)2a and (2F)2b. In contrast, oxidation of the corresponding Ni(II) complex 2Ni generated dimer (2Ni)2. Subsequent demetalation resulted in the formation of bipyrrole-linked freebase dimer (2)2, which could chelate Ni(II) and Cu(II) ions to furnish complexes (2Ni)2 and (2Cu)2, respectively. In comparison to the fused dimeric species (2F)2a and (2F)2b, the nonfused dimer (2)2 and its complexes (2Ni)2 and (2Cu)2 exhibit diminished local aromaticity, narrowed HOMO-LUMO gaps, and a red-shifted absorption profile that extends up to 2200 nm. These findings underscore a potent strategy for creating expanded porphyrin dimers, wherein the aromaticity and near-infrared absorption can be fine-tuned by incorporating an appendant pyrrole unit.
Collapse
Affiliation(s)
- Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangxian Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping SE-60174, Sweden
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Panua A, Velmurugan G, Comba P, Rath H. Syntheses of Variants of π(σ) Aromatic Modified N-Methyl N-Confused Porphyrinoids with Adaptive Properties. Chem Asian J 2024:e202401196. [PMID: 39604194 DOI: 10.1002/asia.202401196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Retrosynthetically designed and syntheses of three unprecedented core modified N-confused porphyrinoids exhibiting vis-NIR absorption with tunable aromaticity is reported. Controlled modification of types of oxidants (chloranil vs. DDQ) has led to the isolation of 18π-aromatic porphyrinoid 7 (upon chloranil oxidation) while DDQ oxidation has led to 18 e σ-aromatic porphyrinoids 8 and 9. All the three SN3 hybrid N-confused porphyrinoids 7-9 have been thoroughly characterized via solution state spectroscopic measurements and in-depth DFT studies for concluding π-aromaticity of 7 and σ-aromaticity of 8 and 9. While 7 could recognize the fluoride anion with high selectivity via deprotonation rather than an anion recognition based mechanism, acetate anion binding studies clearly revealed NH⋅⋅⋅AcO- H-bonding interaction in the host-guest complex [7-AcO-] supporting an anion recognition based mechanism. Porphyrinoids 8 and 9 remain unsusceptible to anion recognition. The conformational preorganization and anion induced deprotonation leading to conformational reorganization have been extensively studied by solution state spectroscopic techniques and in depth DFT level theoretical calculations.
Collapse
Affiliation(s)
- Anirban Panua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700 032, India
| | - Gunasekaran Velmurugan
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Harapriya Rath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A/2B Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700 032, India
| |
Collapse
|
3
|
Sun M, Xie Y, Baryshnikov G, Li C, Sha F, Wu X, Ågren H, Li S, Li Q. Mono- and bis-Pd(ii) complexes of N-confused dithiahexaphyrin(1.1.1.1.1.0) with the absorption and aromaticity modulated by Pd(ii) coordination, macrocycle contraction and ancillary ligands. Chem Sci 2024; 15:2047-2054. [PMID: 38332829 PMCID: PMC10848665 DOI: 10.1039/d3sc05473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
To further enrich the coordination chemistry of hexaphyrins and probe the underlying property-structural correlations, N-confused dithiahexaphyrin(1.1.1.1.1.0) (1) with 26 π-electron Hückel aromaticity was synthesized. Based on its unprecedented two unsymmetrical cavities, five palladium complexes 2, 3, 4-Ph, 4-Cl and 5 have been successfully synthesized under various coordinations. Thus, two mono-Pd(ii) complexes 2 and 3 with the Pd(ii) atom coordinated in the two different cavities were obtained by treating 1 with palladium reagents PdCl2, and (PPh3)2PdCl2 respectively. On this basis, bis-Pd(ii) complexes 4-Ph and 4-Cl were synthesized by treating 2 and 3 with (PPh3)2PdCl2 and PdCl2, respectively. As a result, both 4-Ph and 4-Cl contain two Pd(ii) atoms coordinated within the two cavities, with one of the Pd(ii) atoms further coordinated to a triphenylphosphine ligand in addition to an anionic ancillary ligand of Ph- and Cl-, respectively. Notably, a further contracted mono-Pd(ii) complex 5 was synthesized by treating 1 with Pd(PPh3)4 by eliminating one of the meso-carbon atoms together with the corresponding C6F5 moiety. These complexes present tunable 26 π aromaticity and NIR absorption up to 1060 nm. This work provides an effective approach for developing distinctive porphyrinoid Pd(ii) complexes from a single porphyrinoid, without resorting to tedious syntheses of a series of porphyrinoid ligands.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University SE-601 74 Norrköping Sweden
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Feng Sha
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University SE-751 20 Uppsala Sweden
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|