1
|
Yang X, Wan X, Yang WC, Fang H. Access to quaternary-carbon-containing β-alkyl amides via persulfate-promoted domino alkylation/smiles rearrangement of alkenes. RSC Adv 2025; 15:16183-16186. [PMID: 40376669 PMCID: PMC12079418 DOI: 10.1039/d5ra02454d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
In this study, we present an efficient approach for synthesizing all-carbon quaternary-centered β-alkyl amides. This method entails a persulfate-promoted cascade alkylative annulation/arylation of N-(arylsulfonyl)acrylamide with 4-alkyl-1,4-dihydropyridines (DHP). The reaction mechanism comprises four consecutive steps: (1) in situ generation of alkyl radical intermediates, (2) radical addition to the alkene moiety, (3) 1,4-aryl migration, and (4) finally desulfonylation.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| | - Xiaoqing Wan
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| | - Wen-Chao Yang
- School of Plant Protection, Yangzhou University Yangzhou 225009 P. R. China
| | - Hegui Fang
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| |
Collapse
|
2
|
Xu W, Dang H, Sheng H, Shen J, Wang M. Synthesis of 3,4-unsubstituted isoquinolone derivatives from benzimidates and vinylene carbonate via cobalt(III)-catalyzed C-H activation/cyclization. Org Biomol Chem 2025; 23:3836-3840. [PMID: 40159919 DOI: 10.1039/d5ob00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A cobalt(III)-catalyzed C-H activation/cyclization of benzimidates and vinylene carbonate has been developed. Various benzimidates showed good compatibility, providing isoquinolone derivatives in moderate to good yields. This strategy employs the inexpensive Co(III) as the catalyst and provides an efficient and practical solution for the synthesis of medicinally valuable 3,4-unsubstituted isoquinolone derivatives.
Collapse
Affiliation(s)
- Weiyan Xu
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| | - Haowen Dang
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| | - Huiru Sheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China.
| | - Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China.
| | - Min Wang
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| |
Collapse
|
3
|
He XC, Liu YL, Gao J, Li KR, Chen K, Xiang HY, Yang H. MeOH-Triggered Halogen-Atom Transfer of Unactivated Alkyl Bromides Enabling the Photoredox Giese Addition. Org Lett 2025; 27:3089-3094. [PMID: 40099945 DOI: 10.1021/acs.orglett.5c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Herein, a nickel-catalyzed, photoredox Giese addition reaction with readily accessible alkyl bromides, driven by readily available feedstock MeOH as the halogen-atom transfer (XAT) reagent, was successfully achieved under mild conditions. The versatility of this protocol was demonstrated through a range of structurally varied alkyl bromides and Giese-type acceptors with moderate to good yields. Mechanistic investigation highlights that the formation of alkyl radicals through the XAT of alkyl bromides was tentatively prompted by •CH2OH, which was derived from the sequential photo-oxidation/1,2-hydrogen-atom transfer of MeOH.
Collapse
Affiliation(s)
- Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Sun H, Yang LH, Fu MY, Cui B. Computational and Experimental Studies on the α-Functionalization of Ketones Using Domino Reactions: A Strategy to Increase Chemoselectivity at the α-Carbon of Ketones. Molecules 2025; 30:1114. [PMID: 40076337 PMCID: PMC11901711 DOI: 10.3390/molecules30051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
A facile strategy to increase the chemoselectivity of domino reactions was proposed and successfully applied in the α-functionalization of ketones. The strategy involved widening the activation energy of the main reaction and side reaction through intermolecular interactions, thereby increasing the chemoselectivity of the domino reaction. In the proposed α-functionalization reaction, TMSCF3 acted as an excellent reagent which increased the nucleophilicity of DMF through the Van der Waals force and reduced the nucleophilicity of H2O through a hydrogen bond. We found that TMSCF3 can increase the activation energy difference between the main reaction and side reaction using DFT calculations, which greatly increased chemoselectivity and avoided the formation of by-products. TMSCF3 was recycled by rectification, and the average recovery rate was 87.2%. DFT calculations, XRD experiments, and control experiments were performed to support this mechanism. We are confident that this strategy has the potential to deliver significant practical advancements while simultaneously fostering broader innovation in the field of domino synthesis.
Collapse
Affiliation(s)
- Hui Sun
- Manganese Catalysis and Asymmetric Synthesis Laboratory, Hebei University of Science and Technology, Shijiazhuang 050018, China; (L.-H.Y.); (M.-Y.F.)
| | | | | | - Bin Cui
- Manganese Catalysis and Asymmetric Synthesis Laboratory, Hebei University of Science and Technology, Shijiazhuang 050018, China; (L.-H.Y.); (M.-Y.F.)
| |
Collapse
|
5
|
Zhuo J, Liu J, Zhou M, Ma L, Zhang M. Visible-Light-Induced C(sp 3)-H Activation for Minisci Alkylation of Pyrimidines Using CHCl 3 as Radical Source and Oxidant. J Org Chem 2025; 90:1400-1410. [PMID: 39807970 DOI: 10.1021/acs.joc.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp3)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp3)-H with dichloromethyl radical (·CHCl2), which was generated by photoreduction of chloroform.
Collapse
Affiliation(s)
- Jiatian Zhuo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jinshan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
6
|
Gong D, Gao C, Zhang Y, Yao F, Li Q, Li Y, Zhao L, Kong D. Photocatalytic Hydrodichloromethylation of Unactivated Alkenes with Chloroform. Org Lett 2024; 26:11230-11235. [PMID: 39680746 DOI: 10.1021/acs.orglett.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A visible-light-induced method for the hydrodichloromethylation of unactivated alkenes using chloroform (CHCl3) was developed, employing pyridine·BH3 as the halogen atom transfer (XAT) reagent. The strategy showed a broad functional group tolerance, and 29 examples of unactivated alkenes, including complex natural products or drug derivatives, have been established with good yields. Mechanistic studies indicated that CHCl3 serves as both the source of a dichloromethyl radical and a hydrogen atom transfer (HAT) reagent, and the borane short-chain reaction process was involved in this system. This method represents a novel approach for hydrodichloromethylation of unactivated alkenes without using an additional HAT reagent.
Collapse
Affiliation(s)
- Dawei Gong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Caiyu Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yanlin Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fen Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Qixuan Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yufei Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Lina Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Degong Kong
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
7
|
Guo L, Zhang Z, Zhang F, Sun K, Yu B. Visible-Light-Induced Cascade Cyclization of 1-(2-(Arylethynyl)benzoyl)indoles into Sulfonated Benazepino[1,2- a]indolones. Org Lett 2024; 26:10982-10987. [PMID: 39657113 DOI: 10.1021/acs.orglett.4c04145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
1-(2-(Arylethynyl)benzoyl)indoles were developed as an innovative scaffold for radical cascade cyclization under visible-light and mild conditions, enabling efficient synthesis of sulfonated benazepino[1,2-a]indolones. This method operates at room temperature and demonstrates broad substrate compatibility and scalability, with promising potential for sunlight-driven reactions.
Collapse
Affiliation(s)
- Liangke Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Zhiyang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Fuyi Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
8
|
Khandelia T, Panigrahi P, Ghosh S, Mandal R, Doley B, Patel BK. Solvent Dictated Organic Transformations. Chem Asian J 2024; 19:e202400603. [PMID: 39509646 DOI: 10.1002/asia.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Indexed: 11/15/2024]
Abstract
Solvent plays an important role in many chemical reactions. The C-H activation has been one of the most powerful tools in organic synthesis. These reactions are often assisted by solvents which not only provide a medium for the chemical reactions but also facilitate reaching to the product stage. The solvent helps the reaction profile both chemically and energetically to reach the targeted product. Organic transformations via C-H activation from the solvent assistance perspective has been discussed in this review. Various solvents such as tetrahydrofuran (THF), MeCN, dichloromethane (DCM), dimethoxyethane (DME), 1,2-dichloroethane (1,2-DCE), dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropyl nitrile (iPrCN), 1,4-dioxane, AcOH, trifluoroacetic acid (TFA), Ac2O, PhCF3, chloroform (CHCl3), H2O, N-methylpyrrolidone (NMP), acetone, methyl tert-butyl ether (MTBE), toluene, p-xylene, alcohols, MeOH, 1,1,1-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), tert-amyl alcohol and their roles are discussed. The exclusive role of the solvent in various transformations has been deliberated by highlighting the substrate scope, along with the proposed mechanisms. For easy classification, the review has been divided into three parts: (i) solvent-switched divergent C-H activation; (ii) C-H bond activation with solvent as the coupling reagent, and (iii) C-H activation with solvent caging and solvent-assisted electron donor acceptor (EDA) complex formation and autocatalysis.
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Barlina Doley
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
9
|
Zhao HQ, Li WT, Yao Y, Zhao YL, Ouyang XH. Iron-Catalyzed Perfluoroalkylarylation of Styrenes with Arenes and Alkyl Iodides Enabled by Halogen Atom Transfer. Org Lett 2024; 26:10183-10188. [PMID: 39556037 DOI: 10.1021/acs.orglett.4c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A new iron-catalyzed three-component perfluoroalkylarylation of styrenes with alkyl halides and arenes has been established. Alkyl halides undergo halogen atom transfer with methyl radicals to form alkyl radicals in reactions initiated by a combination of tert-butyl peroxybenzoate and an iron catalyst, thus adducting to the olefins, which results in alkylarylation products. The protocol is compatible with a wide range of perfluoroalkyl and non-perfluoroalkyl halides, features excellent functional group tolerance, and enables the synthesis of structurally diverse 1,1-diaryl fluoro-substituted alkanes.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Kumar V, Bisoyi A, Beevi V F, Yatham VR. Light-Induced Difunctionalization of Alkenes with Polyhaloalkanes and Quinoxalin-2(1 H)-ones. J Org Chem 2024; 89:16964-16968. [PMID: 39484822 DOI: 10.1021/acs.joc.4c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we report a metal-free light-induced three-component reaction for the synthesis of polychloroalkyl-substituted quinoxalin-2(1H)-ones using commercially available alkenes, polyhalo alkanes, and quinoxalin-2(1H)-ones. Preliminary mechanistic studies suggested the generation of radical intermediates via an EDA-complex, single electron transfer, or halogen atom transfer pathway. Under mild reaction conditions, various alkenes and quinoxalin-2(1H)-ones containing different functional groups are compatible, providing the corresponding polychloroalkyl-substituted quinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Vivek Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Fathima Beevi V
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
11
|
Ren J, Xia XF. Visible-light-induced alkyl-arylation of olefins via a halogen-atom transfer process. Org Biomol Chem 2024; 22:6370-6375. [PMID: 39046012 DOI: 10.1039/d4ob00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible-light-induced three-component 1,2-alkyl-arylation of alkenes and alkyl radical addition/cyclization of acrylamides have been realized via a photocatalytic halogen-atom transfer (XAT) process. This metal-free protocol utilizes readily available tertiary alkylamine as both an electron donor and an XAT reagent for the activation of alkyl halides using naphthalimide (NI)-based organic photocatalysts. This process features broad substrate scope and good functional group tolerance under mild conditions, and could be effectively applied to a variety of medicinally relevant substrates.
Collapse
Affiliation(s)
- Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
12
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
13
|
Zhou H, Li L, Yan Q, Ma J, Wang Y, Gao Y, Liu ZQ, Li Z. Metal-free radical bicyclization/chloroalkylarylation of 1,6-enynes with chloroalkanes. Chem Commun (Camb) 2024; 60:3938-3941. [PMID: 38497681 DOI: 10.1039/d4cc00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Free radical initiated bicyclization of 1,6-enynes with chloralkanes, is achieved via selective activation of the C(sp3)-H bond of the chloralkane, resulting in diverse polychlorinated/chlorinated polyheterocycles. Two kinds of transformations and a scaled-up experiment were performed to test the synthetic importance of the organic chlorides. Finally, a range of radical inhibition operations and radical clock tests were explored to support the reaction process.
Collapse
Affiliation(s)
- Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jinyue Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
14
|
Tripathy A, Bisoyi A, P A, Venugopal S, Yatham VR. Synergistic Merger of Ketone, Halogen Atom Transfer (XAT), and Nickel-Mediated C(sp 3)-C(sp 2) Cross-Electrophile Coupling Enabled by Light. ACS ORGANIC & INORGANIC AU 2024; 4:229-234. [PMID: 38585508 PMCID: PMC10996044 DOI: 10.1021/acsorginorgau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024]
Abstract
In the present manuscript, we have developed a unique catalytic system by merging photoexcited ketone catalysis, halogen atom transfer (XAT), and nickel catalysis to forge C(sp3)-C(sp2) cross-electrophile coupling products from unactivated iodoalkanes and (hetero)aryl bromides. The synergistic catalytic system works under mild reaction conditions and tolerates a variety of functional groups; moreover, this strategy allows the late-stage modification of medicinally relevant molecules. Preliminary mechanistic studies reveal the role of the α-aminoalkyl radical, which further participates in the XAT process with alkyl iodides to generate the desired alkyl radical, which eventually intercepts with the nickel catalytic cycle to liberate the products in good to excellent yields.
Collapse
Affiliation(s)
- Alisha
Rani Tripathy
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Akash Bisoyi
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Arya P
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Sreelakshmi Venugopal
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
15
|
Yu W, Wang H, Zhao K, Li W, Wang T, Fu J. Visible-Light-Induced Three-Component 1,2-Alkylpyridylation of Alkenes via a Halogen-Atom Transfer Process. J Org Chem 2024; 89:1703-1708. [PMID: 38227772 DOI: 10.1021/acs.joc.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Visible-light-induced three-component 1,2-alkylpyridylation of alkenes with unactivated alkyl iodides and aryl cyanides is reported via a photocatalytic halogen-atom transfer (XAT) strategy. This metal-free protocol utilizes readily available tertiary alkylamine as the terminal reductant to smoothly convert alkyl iodides into the corresponding carbon radical species. The reaction features a broad substrate scope, excellent functional group tolerance, high efficiency, and mild reaction conditions. The practicability of this methodology is further demonstrated in the late-stage difunctionalization of bioactive molecules.
Collapse
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang 330022, China
| | - Hongyu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kuang Zhao
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang 330022, China
| | - Wendong Li
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang 330022, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Wang H, Liu R, Sun Q, Xu K. Direct alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. Chem Commun (Camb) 2023; 59:12763-12766. [PMID: 37812023 DOI: 10.1039/d3cc04356h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The metal-free alkylation of N-heterocycles with alkenes has remained a synthetic challenge. We report here the successful implementation of metal-free alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. This protocol provides a mechanistically distinct approach to prepare a variety of C-3 alkylated quinoxalinones that are otherwise quite difficult to synthesize by other means.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ruoyu Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Wu Y, Liu H, Liu L, Yu JT. Metal-free polychloromethylation/cyclization of unactivated alkenes towards ring-fused tricyclic indolones and benzoimidazoles. Org Biomol Chem 2023; 21:7079-7084. [PMID: 37641965 DOI: 10.1039/d3ob01191g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polychloromethylative cyclization of N-alkenyl indoles was developed under metal-free conditions to afford tricyclic pyridoindolones and pyrroloindolones in moderate to good yields. In the reaction, commercially available CHCl3 and CH2Cl2 were employed as tri- and dichloromethyl radical sources. Moreover, tri- and dichloromethylated polycyclic benzoimidazoles can also be obtained under standard conditions.
Collapse
Affiliation(s)
- Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Han Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
18
|
Ma C, Shen J, Qu C, Shao T, Cao S, Yin Y, Zhao X, Jiang Z. Enantioselective Chemodivergent Three-Component Radical Tandem Reactions through Asymmetric Photoredox Catalysis. J Am Chem Soc 2023; 145:20141-20148. [PMID: 37639692 DOI: 10.1021/jacs.3c08883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chemodivergent synthesis has been achieved in asymmetric photocatalysis. Under a dual catalyst system consisting of a chiral phosphoric acid and DPZ as a photosensitizer, different inorganic bases enabled the formation of two sets of valuable products from the three-component radical tandem transformations of 2-bromo-1-arylenthan-1-ones, styrenes, and quinoxalin-2(1H)-ones. The key to success was the distinct pKa environment, in which the radicals that formed on the quinoxalin-2(1H)-one rings after two radical addition processes underwent either single-electron oxidation or single-electron reduction. In addition, this work represents the first use of quinoxalin-2(1H)-ones in asymmetric photoredox catalysis.
Collapse
Affiliation(s)
- Chaorui Ma
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyu Shen
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chaofan Qu
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tianju Shao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shanshan Cao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanli Yin
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
19
|
Singh T, Nasireddy SR, Upreti GC, Arora S, Singh A. Photocatalytic, Intermolecular Olefin Alkylcarbofunctionalization Triggered by Haloalkyl Radicals Generated via Halogen Atom Transfer. Org Lett 2023. [PMID: 37470716 DOI: 10.1021/acs.orglett.3c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A visible-light-mediated, haloalkyl-radical-initiated, three-component olefin difunctionalization is reported. The application of haloalkyl radicals generated via halogen atom abstraction by α-aminoalkyl radicals has been demonstrated for accessing a new halogenated chemical space. Overall, the alkylcarbofunctionalization of styrenes was accomplished by employing them as (poly)haloalkyl radical acceptors and subsequent C-C bond formation with quinoxalinones.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | | | - Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | - Shivani Arora
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| |
Collapse
|