1
|
Patel RI, Saxena B, Sharma A. Photoactivation of Thianthrenium Salts: An Electron-Donor-Acceptor (EDA)-Complex Approach. J Org Chem 2025. [PMID: 40368878 DOI: 10.1021/acs.joc.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Thianthrenium salts have emerged as one of the most versatile reagents, gaining significant popularity within the synthetic community for their utility in the construction of C-C and C-X (X = N, O, S, P, halogens) bonds. The use of photoredox and transition metal catalysis with thianthrenium salts for C-C and C-heteroatom bond formation is well established. However, most of these methods require elevated temperatures, expensive catalysts, and ligands under stringent conditions for effective execution. In contrast, the photocatalysis- and transition-metal-free approaches for constructing C-C and C-X bonds using thianthrenium salt derivatives have become increasingly sought after. In this regard, electron-donor-acceptor (EDA)-complex reactions have emerged as a powerful strategy in organic synthesis, eliminating the need for photocatalysts under visible light irradiation. EDA-complex photochemistry exploits the electron-acceptor properties of thianthrenium salts, facilitating the rapid generation of radical intermediates via the C-S bond cleavage. These radical intermediates play a pivotal role in enabling a variety of valuable C-C and C-X formations. In this Perspective, we highlight significant advances in the EDA-complex-mediated reactions involving thianthrenium salts with mechanisms, substrate scope, and limitations for constructing C-C and C-heteroatom bonds. For the sake of brevity, the article is organized into five main sections: (1) Nitrogen-based donor reactions, (2) Oxygen-based donor reactions, (3) Sulfur-based donor reactions, (4) Phosphorus-based donor reactions, and (5) π-based donor reactions, with a focus on C-C, C-S, C-B and C-P bond formations.
Collapse
Affiliation(s)
- Roshan I Patel
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Barakha Saxena
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anuj Sharma
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Du Z, Gong W, Yuan S, Ren Y, Huang C, Zeng X. Copper-Catalyzed Difluoromethylation of Alkenyl Thianthrenium Salts. Org Lett 2024; 26:11062-11066. [PMID: 39635920 DOI: 10.1021/acs.orglett.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We have developed a novel and straightforward protocol that facilitates the transformation of alkenylsulfonium salts leading to the direct synthesis of E-difluoromethylated alkenes. The success of this method relies on the use of copper catalysis and Vicic-Mikami reagent (DMPU)2Zn(CF2H)2. These mild protocols offer the advantage of selectively synthesizing either aromatic or aliphatic difluoromethylated alkenes. Furthermore, our methodology extends to the perfluoroalkylation of alkenylsulfonium salts. Notably, this approach is conducive to large-scale synthesis and holds promise for diverse applications.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenbo Gong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shulin Yuan
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yifan Ren
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chenteng Huang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
5
|
Mondal M, Ghosh S, Lai D, Hajra A. C-H Functionalization of Heteroarenes via Electron Donor-Acceptor Complex Photoactivation. CHEMSUSCHEM 2024; 17:e202401114. [PMID: 38975970 DOI: 10.1002/cssc.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
C-H Functionalization of heteroarenes stands as a potent instrument in organic synthesis, and with the incorporation of visible light, it emerged as a transformative game-changer. In this domain, electron donor-acceptor (EDA) complex, formed through the pairing of an electron-rich substrate with an electron-accepting molecule, has garnered substantial consideration in recent years due to the related avoidance of the requirement of photocatalyst as well as oxidant. EDA complexes can undergo photoactivation under mild conditions and exhibit high functional group tolerance, making them potentially suitable for the functionalization of biologically relevant heteroarenes. This review article provides an overview of recent advancements in the field of C-H functionalization of heteroarenes via EDA complex photoactivation with literature coverage up to April, 2024.
Collapse
Affiliation(s)
- Madhusudan Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
6
|
Hu W, Yang T, Chen S, Yuan L, Shang Y. Efficient accessibility of indole and pyrrole nuclei via late-stage aryl C-H activation of drug molecules promoted by thianthrenium salts. Chem Commun (Camb) 2024; 60:12916-12919. [PMID: 39417370 DOI: 10.1039/d4cc04528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An efficient redox-neutral palladium-catalyzed system has been developed to introduce indole and pyrrole units to a wide range of bioactive molecules via late-stage aryl C-H activation, providing a robust tool for medicinal chemists to explore structure-activity relationships (SARs). Furthermore, the successful gram-scale reaction and subsequent synthetic investigations demonstrate the potential application of this established method in organic synthesis, materials science, and biochemistry.
Collapse
Affiliation(s)
- Wangcheng Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Lili Yuan
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
7
|
Sau S, Takizawa S, Kim HY, Oh K. Visible Light-Induced Radical Cascade Functionalization of Quinoxalin-2(1 H)-ones: Three-Component 1,2-Di(hetero)arylation Approach with Styrenes and Thianthrenium Salts. Org Lett 2024; 26:8821-8826. [PMID: 39383308 DOI: 10.1021/acs.orglett.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The additive-free visible light-induced three-component 1,2-di(hetero)arylation of styrenes was developed using quinoxalin-2(1H)-ones and thianthrenium salts. The purple visible light excitable quinoxalin-2(1H)-ones were utilized for the single-electron transfer to aryl thianthrenium salts, where the generated aryl radical species underwent the addition cascade to styrenes and quinoxalin-2(1H)-ones. The direct aryl radical addition to quinoxalin-2(1H)-ones also led to the formation of a side product, C3-aryl quinoxalin-2(1H)-ones, capable of a photoredox process to help the formation of 1,2-di(hetero)arylation products.
Collapse
Affiliation(s)
- Sudip Sau
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Dang X, Li Z, Shang J, Zhang C, Wang C, Xu Z. Photoinduced C(sp 3)-H Bicyclopentylation Enabled by an Electron Donor-Acceptor Complex-Mediated Chemoselective Three-Component Radical Relay. Angew Chem Int Ed Engl 2024; 63:e202400494. [PMID: 38598042 DOI: 10.1002/anie.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The photoredox electron donor-acceptor (EDA) complex-mediated radical coupling reaction has gained prominence in the field of organic synthesis, finding widespread application in two-component coupling reactions. However, EDA complex-promoted multi-component reactions are not well developed with only a limited number of examples have been reported. Herein, we report a photoinduced and EDA complex-promoted highly chemoselective three-component radical arylalkylation of [1.1.1]propellane, which allows the direct functionalization of C(sp3)-H with bicyclo[1.1.1]pentanes (BCP)-aryl groups under mild conditions. A variety of unnatural α-amino acids, featuring structurally diversified 1,3-disubstituted BCP moieties, were synthesized in a single-step process. Notably, leveraging the high tension release of [1.1.1]propellane, the highly unstable transient aryl radical undergoes rapid conversion into a relatively stable tertiary alkyl transient radical, and consequently, the competing side-reaction of two-component coupling was entirely suppressed. The strategic use of this transient radical conversion approach would be useful for the design of diverse EDA complex-mediated multi-component reactions. It is noteworthy that the highly chemoselective late-stage incorporation of the 1,3-disubstituted BCP pharmacophores into peptides was achieved both in liquid-phase and solid-phase reactions. This advancement is anticipated to have significant application potential in the future development of peptide drugs.
Collapse
Affiliation(s)
- Xiaobo Dang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Jinlong Shang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chenyang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
- Technology & Engineering Institute of Lanzhou University, Gongyuan Road, Baiyin, 730900, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
9
|
Wu Q, Li X, Ma J, Shi Y, Lv J, Yang D. Arylcyanation of Styrenes by Photoactive Electron Donor-Acceptor Complexes/Copper Catalysis. Org Lett 2024; 26:7949-7955. [PMID: 39259680 DOI: 10.1021/acs.orglett.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
Collapse
Affiliation(s)
- Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, P. R. China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
10
|
Gan Z, Chen J, Wang H, Xue Z, Chen Z, Zhang Y, Wang L, Zi H, Liu S, Shi L, Jin Y. Photoinduced Phosphoniumation of Aryl Halides and Arylthianthrenium Salts via an Electron Donor-Acceptor Complex. Org Lett 2024; 26:7751-7756. [PMID: 39235211 DOI: 10.1021/acs.orglett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Owing to their remarkable practicality and utility, phosphonium salts have attracted substantial interest and are widely applied in critical areas, such as medicine, materials science, and catalysis. Herein, we developed a facile and photocatalyst/metal-free synthetic strategy for the preparation of phosphonium salts utilizing aryl halides/arylthianthrenium salts as aryl radical precursors. This approach is disclosed to undergo an efficient light-induced electron donor-acceptor pathway, facilitating the synthesis of a structurally diverse range of phosphonium salts.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui Zi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
11
|
Zhao B, Liu YX, Liang PP, Hu GQ, Liu JH. S-Arylation of Thioic S-Acid Using Thianthrenium Salts via Photoactivation of Electron Donor-Acceptor Complex. J Org Chem 2024; 89:12508-12513. [PMID: 39135492 DOI: 10.1021/acs.joc.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Yang LH, Liu XS, Liu C, Wang SY, Xie LY. Ring-Opening Sulfonylation of Cyclic Sulfonium Salts with Sodium Sulfinates under Transition-Metal- and Additive-Free Conditions. J Org Chem 2024; 89:12668-12680. [PMID: 39121341 DOI: 10.1021/acs.joc.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Incorporating a sulfonyl group into parent molecules has been shown to effectively improve their synthetic applications and bioactivities. In this study, we present a straightforward and practical approach for the ring-opening reaction of alkenyl-aryl sulfonium salts with sodium sulfinates to produce a range of sulfur-containing alkyl sulfones. This method offers the benefits of mild reaction conditions, easily accessible raw materials, wide substrate applicability, good functional group compatibility, and operational simplicity. Importantly, the resulting products can be readily converted into sulfoxides, sulfones, sulfoximines, and some heterocyclic compounds.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xin-Si Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Chu Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si-Yu Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
13
|
Gan Z, Liu S, Chen J, Chen Z, Zhang Y, Wang L, Wang H, Li Y, Jin Y. A Modular Three-Component Approach for Site-selective Tandem Arene Thiophosphorylation. Org Lett 2024; 26:7155-7160. [PMID: 39167484 DOI: 10.1021/acs.orglett.4c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Thiophosphates serve as pivotal reagents within the realms of both organic and inorganic synthesis, with their most notable applications observed in agricultural chemistry. This manuscript delineates a modular three-component synthetic strategy for site-selective arene C-H thiophosphorylation with thianthrenium salt, 1,4-diazabicyclo[2.2.2]octane-sulfur dioxide (DABSO), and diarylphosphine oxides as substrates. This approach facilitates the metal-free and green synthesis of a diverse spectrum of S-aryl phosphorothioates through C-H functionalization and late-stage modification showcasing practicality and broad applicability.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yihao Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
15
|
Cao ZW, Zhang JX, Wang JT, Li L, Chen XY, Jin S, Cao ZY, Wang P. Palladium-Catalyzed Hiyama-Type Coupling of Thianthrenium and Phenoxathiinium Salts. Org Lett 2024; 26:6681-6686. [PMID: 39058573 DOI: 10.1021/acs.orglett.4c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.
Collapse
Affiliation(s)
- Zhi-Wei Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ji-Xuan Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Jin-Tao Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Lang Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
16
|
He Z, Li Z, Lai S, Li H. Electron Donor-Acceptor Complex Enabled Cyclization/Sulfonylation Cascade of N-Heterocycles with Thianthrenium Salts. Org Lett 2024; 26:6652-6657. [PMID: 39058904 DOI: 10.1021/acs.orglett.4c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
We report a visible-light-promoted cyclization/sulfonylation cascade of N-heterocycles with thianthrenium salts using DABSO as the SO2 surrogate. This method features excellent functional group tolerance, wide substrate scope, and late-stage elaboration of bioactive relevant molecules. Mechanistic investigations reveal that the photoactive electron donor-acceptor (EDA) complexes between thianthrenium salts and DABCO are capable of the generation of aryl radicals, which induce the following SO2 insertion by attacking DABSO, thus triggering the key radical cyclization step.
Collapse
Affiliation(s)
- Zhengjun He
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhi Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Shuo Lai
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
17
|
Wang Y, Liu L, Deng P, Ji H. Photocatalyzed Acylation of Azauracil Derivatives with Aldehydes. J Org Chem 2024; 89:11083-11087. [PMID: 39044345 DOI: 10.1021/acs.joc.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A novel approach for the acylation of azauracil derivatives with aldehydes has been developed utilizing sodium decatungstate (NaDT) as a photocatalyst. This method demonstrates broad substrate tolerance and yields moderate to excellent outcomes. Notably, it aligns with green chemistry principles by eliminating oxidants, utilizing eco-friendly energy sources, and offering high scalability and operational simplicity.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Peng Deng
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Hongtao Ji
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
18
|
Liu J, Feng Z, Li H, Yu Z, Wang H, Tang B. Efficient late-stage synthesis of quaternary phosphonium salts from organothianthrenium salts via photocatalysis. Chem Commun (Camb) 2024. [PMID: 39073349 DOI: 10.1039/d4cc02515f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Quaternary phosphonium salts (QPS) are significant structural motifs in drugs, materials, and catalysts. Here, a photoactivated approach for the selective late-stage synthesis of QPS utilizing organothianthrenium salts and tertiary phosphines is presented with high yields and broad functional group compatibility. Additionally, the synthetic utility of this protocol is demonstrated by in situ generation of QPS via C-H functionalization and its fluorescence confocal imaging of mitochondrial localization in cells.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Zhaoyu Feng
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Hanxiang Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Hongyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Bo Tang
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
19
|
Dupommier D, Vuagnat M, Rzayev J, Roy S, Jubault P, Besset T. Site-Selective Ortho/Ipso C-H Difunctionalizations of Arenes using Thianthrene as a Leaving Group. Angew Chem Int Ed Engl 2024; 63:e202403950. [PMID: 38712851 DOI: 10.1002/anie.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.
Collapse
Affiliation(s)
- Dorian Dupommier
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Sourav Roy
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| |
Collapse
|
20
|
Zhong LJ, Chen H, Shang X, Fan JH, Tang KW, Liu Y, Li JH. Photoredox Ring Opening 1,2-Alkylarylation of Alkenes with Sulfonium Salts Toward Thioether-Substituted Oxindoles. J Org Chem 2024; 89:8721-8733. [PMID: 38832808 DOI: 10.1021/acs.joc.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A novel strategy for the difunctionalization of electron-deficient alkenes with aryl sulfonium salts to access remote sulfur-containing oxindole derivatives by using in situ-formed copper(I)-based complexes as a photoredox catalyst is presented. This method enables the generation of the C(sp3)-centered radicals through site selective cleavage of the C-S bond of aryl sulfonium salts under mild conditions. Moreover, the oxidation reactions of desired products provide a new strategy for the preparation of sulfoxide or sulfone-containing compounds. Importantly, this approach can be easily applied to late-stage modification of pharmaceuticals molecules.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Xu H, Li X, Wang Y, Song X, Shi Y, Lv J, Yang D. Arylthianthrenium Salts as the Aryl Sources: Visible Light/Copper Catalysis-Enabled Intermolecular Azidosulfonylation of Alkenes. Org Lett 2024; 26:1845-1850. [PMID: 38408361 DOI: 10.1021/acs.orglett.4c00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The difunctionalization of alkenes using aryl thianthrenium salts as the aryl sources has been reported sporadically. However, the four-component difunctionalization of alkenes on the basis of aryl thianthrenium salts has not been reported thus far and still remains a challenge. Herein, a visible light/copper catalysis-enabled four-component reaction of aryl thianthrenium salts, DABCO·(SO2)2, alkenes, and TMSN3 is presented, which affords a facile approach to β-azidosulfones in good yields with broad substrate scope and excellent functional group tolerance. This strategy indirectly realizes the method for the synthesis of β-azidosulfones through site-selective aryl C-H bond functionalization and alkene difunctionalization. This developed method is an important complement to thianthrenium salts chemistry.
Collapse
Affiliation(s)
- Hao Xu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, China
| | - Yifei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuyan Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Xiang S, Li M, Xia Z, Fang C, Yang W, Deng W, Tan Z. Photocatalyst-free visible-light-promoted C(sp 2)-P coupling: efficient synthesis of aryl phosphonates. Org Biomol Chem 2024; 22:1794-1799. [PMID: 38348741 DOI: 10.1039/d3ob01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel and efficient method for the synthesis of aryl phosphonates from aryl halides and trialkylphosphites via EDA complex-based photochemistry has been developed. It is demonstrated that aryl radicals, generated from the photoexcitation of the EDA complex formed by aryl halide and potassium thioacetate, could be intercepted with trialkylphosphite to produce the corresponding aryl phosphonates in moderate to good yields. It should be noted that the reaction is performed at room temperature in the absence of any transition metal catalyst, oxidant and photocatalyst, exhibiting high efficiency, high selectivity, and operational simplicity.
Collapse
Affiliation(s)
- Shiqi Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Min Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Zhen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Chen Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
23
|
Zhou N, Zhao F, Wang L, Gao X, Zhao X, Zhang M. Visible-Light-Induced Regioselective Cascade Radical Cyclization of α-Bromocarbonyls: Access to Benzazepine Derivatives. J Org Chem 2024; 89:2238-2246. [PMID: 38296256 DOI: 10.1021/acs.joc.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Visible-light-induced regioselective cascade radical cyclization of α-bromocarbonyls for the synthesis of benzazepine derivatives is described. In the presence of fac-Ir(ppy)3 (2.0 mol %) as a photocatalyst, 2,6-lutidine as a base, and dichloromethane as a solvent, the reactions proceed smoothly to afford seven-membered rings in good yields. This protocol features a broad substrate scope, excellent functional group tolerance, and mild reaction conditions. Preliminary mechanistic studies reveal that the generation of the α-carbon radical is more prone to react with the 1,1-diphenylethylene tethered acrylamide to generate the stable seven-membered heterocycle.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
24
|
Tang Y, Cai Y, Xie Z, Gao Z, Chen X, Yi J. Multicomponent reactions to access S-aryl dithiocarbamates via an electron donor-acceptor complex under open-to-air conditions. Org Biomol Chem 2024; 22:1378-1385. [PMID: 38275979 DOI: 10.1039/d3ob01935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A simple and efficient transition-metal/photocatalyst-free visible-light-driven one-pot three-component reaction between thianthrenium salts, carbon disulfide and amines under an air atmosphere for the preparation of biologically relevant S-aryl dithiocarbamates is developed. This methodology is robust and scalable, and exhibits a broad substrate scope and excellent functional group tolerance. Of note, a wide range of primary aliphatic amines bearing different groups are suitable for this strategy. The synthetic utility was further demonstrated by a two-step one-pot multi-component reaction and photo-flow decagram-scale synthesis. Preliminary mechanistic studies suggest that the association of the dithiocarbamate anion with thianthrenium salts formed an electron donor-acceptor complex, which upon excitation with visible light produced an aryl radical via single-electron transfer.
Collapse
Affiliation(s)
- Yisong Tang
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Yougen Cai
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zhiwei Xie
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zishan Gao
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Jun Yi
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| |
Collapse
|
25
|
Fan X, Zhang D, Xiu X, Xu B, Yuan Y, Chen F, Gao P. Nucleophilic functionalization of thianthrenium salts under basic conditions. Beilstein J Org Chem 2024; 20:257-263. [PMID: 38352071 PMCID: PMC10862136 DOI: 10.3762/bjoc.20.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, S-(alkyl)thianthrenium salts have become an important means of functionalizing alcohol compounds. However, additional transition metal catalysts and/or visible light are required. Herein, a direct thioetherification/amination reaction of thianthrenium salts is realized under metal-free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates.
Collapse
Affiliation(s)
- Xinting Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Xiangchuan Xiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Bin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
26
|
Gallego-Gamo A, Reyes-Mesa D, Guinart-Guillem A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Site-selective and metal-free C-H phosphonation of arenes via photoactivation of thianthrenium salts. RSC Adv 2023; 13:23359-23364. [PMID: 37559697 PMCID: PMC10407877 DOI: 10.1039/d3ra04512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Aryl phosphonates are prevalent moieties in medicinal chemistry and agrochemicals. Their chemical synthesis normally relies on the use of precious metals, harsh conditions or aryl halides as substrates. Herein, we describe a sustainable light-promoted and site-selective C-H phosphonation of arenes via thianthrenation and the formation of an electron donor-acceptor complex (EDA) as key steps. The method tolerates a wide range of functional groups including biomolecules. The use of sunlight also promotes this transformation and our mechanistic investigations support a radical chain mechanism.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - David Reyes-Mesa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Axel Guinart-Guillem
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Roser Pleixats
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Carolina Gimbert-Suriñach
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Adelina Vallribera
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Albert Granados
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| |
Collapse
|