1
|
Li Y, Kang Y, Xiao J, Zhang Z. Mechanism and Origins of Regio- and Stereoselectivities of NHC-Catalyzed Dearomative Annulation of Benzoazoles and Cinnamaldehydes from DFT. J Phys Chem A 2025; 129:2482-2492. [PMID: 40042290 DOI: 10.1021/acs.jpca.4c08373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A theoretical study on the mechanism, regioselectivity, and enantioselectivity of NHC-catalyzed dearomatizing annulation of benzoxazoles with enals has been conducted using density functional theory calculations. Our calculated results indicate that the favored mechanism occurs through eight reaction steps: initial binding of the NHC to enals, followed by formation of the Breslow intermediate via proton transfer. Subsequent oxidation generates the α,β-unsaturated acylazolium intermediate, which can undergo Michael addition with benzoxazoles. Sequential protonation/deprotonation/cyclization produces the six-membered cyclic intermediate that undergoes catalyst elimination, leading to the final product. DABCO·H+ was found to play important roles in proton transfer and cyclization. Without DABCO·H+, the energy barrier up to 44.2 kcal/mol for step 2 is too high to be accessible. With DABCO·H+, the corresponding value is lowered to 18.6 kcal/mol. The energy barrier for cyclization can be lowered by 7.4 kcal/mol by using DABCO·H+. The Michael addition step determines both the enantioselectivity and the regioselectivity. According to NCI analysis, the enantioselectivity is controlled by the strong interactions (such as C-H···O, C-H···N, and π···π) between the α,β-unsaturated acylazolium intermediate and benzoxazoles. We also discuss the solvent and substituent effects on the enantioselectivity and the role of the NHC. The mechanistic insights obtained in the present study would help improving current reaction systems or designing new synthetic routes.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Yanlong Kang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Junjie Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| |
Collapse
|
2
|
Alipour B. DFT investigation of the mechanism and role of N-heterocyclic carbene (NHC) in constructing asymmetric organosilanes using NHC-catalyzed [4+2] cycloaddition reaction. RSC Adv 2024; 14:35475-35489. [PMID: 39507686 PMCID: PMC11538972 DOI: 10.1039/d4ra03676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
Herein, the mechanism and origin of stereoselectivity for the asymmetric [4+2] cycloaddition between (E)-3-(p-tolyl)acrylaldehyde (R1) and phenyl-3-(trimethylsilyl)prop-2-en-1-one (R2) in the presence of an N-heterocyclic carbene (NHC) were theoretically scrutinized. The desirable catalytic cycle is characterized by five steps: (1) the coupling reaction of the NHC catalyst with R1, the formation of the Breslow and enolate intermediates in the second and third steps, (4) the formal [4+2] cycloaddition reaction to form the stereoselective C-C bond, and (5) the regeneration of NHC to obtain asymmetric organosilanes. In the most energetically favorable pathway, the formation of the enolate intermediate exhibits the highest energy barrier of about 19.48 kcal mol-1 (Re-TS2BA) and is the rate-determining step. The [4+2] cycloaddition reaction is the stereoselectivity-determining step forming the chiral C-C bond with RR, RS, SR and SS configurations, among which RS is the most desirable configuration. The origin of stereoselectivity was investigated using distortion energy analysis. The first and fourth steps helped in investigating the effects of electron-donating (Me) and electron-withdrawing (Cl) groups on cinnamaldehyde. Conceptual DFT (CDFT) analysis was carried out to confirm the critical role of the NHC catalyst as a Lewis base during the reaction processes.
Collapse
Affiliation(s)
- Batoul Alipour
- Department of Chemistry, Tarbiat Modares University P.O. Box 14115 175 Tehran Iran
| |
Collapse
|
3
|
Feng Z, Wu L, Zhou CY, Wang C. N-Heterocyclic Carbene Catalysis for Polycyclic Benzazepines Assembly: Regioselective Intramolecular Tandem Radical Cyclization. Org Lett 2024; 26:9068-9072. [PMID: 39392687 DOI: 10.1021/acs.orglett.4c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A variety of polycyclic benzazepines were rapidly constructed by NHC-catalyzed regioselective redox-neutral intramolecular tandem cyclization. Initial mechanistic studies revealed that a SET radical process was possibly involved.
Collapse
Affiliation(s)
- Zhiming Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Lili Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
4
|
Jiang F, Fan R, Chen B, Mu T, Liu X, Xu J, Tan X, Wu J. Base-Promoted Ring Expansion Reaction of 4-Quinolones To Access Benzazepinones. Org Lett 2024; 26:8312-8316. [PMID: 39315657 DOI: 10.1021/acs.orglett.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
4-Quinolone derivatives undergo an unexpected ring expansion reaction with α-halo esters/phosphonates/sulfones in the presence of a base, such as NaH, to produce novel benzazepinones. Under these mild and transition-metal-free conditions, most substrates gave moderate to excellent yields. The reaction could be applied in gram-scale synthesis of drug-like molecules that greatly accelerated our structure-activity relationship studies. A plausible mechanism was proposed.
Collapse
Affiliation(s)
- Fuhao Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Rong Fan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Bo Chen
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Tong Mu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Xiaofeng Liu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Jiasu Xu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Xuefei Tan
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Jun Wu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| |
Collapse
|
5
|
Li Y, Kang Y, Xiao J, Zhang Z. Mechanism, Chemoselectivity, and Stereoselectivity of an NHC-Catalyzed Reaction of Aldehydes and Hydrazones: A DFT Study. J Phys Chem A 2024; 128:4483-4492. [PMID: 38785354 DOI: 10.1021/acs.jpca.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
To elucidate the mechanism and origins of chemo- and enantioselectivities of the reaction between aliphatic aldehydes and hydrazones catalyzed by triazolium-derived NHC, density functional theory computations have been performed. According to our calculated results, the whole catalytic cycle for the formation of dihydropyridazinones proceeds via the initial nucleophilic addition of NHC to an aliphatic aldehyde, followed by the concerted intramolecular proton transfer and C-Cl bond cleavage. Subsequent deprotonation generates an enolate intermediate. The enolate intermediate then undergoes 1,4-addition to hydrazone to construct a new carbon-carbon bond. The following ring-closure would lead to a six-membered ring intermediate, which, upon the release of NHC, affords the final product dihydropyridazinone. The computation results reveal that intramolecular proton transfer is significantly promoted by the Brønsted acid DIPEA·H+. The carbon-carbon bond formation step could determine not only the chemoselectivity but also the stereoselectivity and lead to the S-isomer product. It was found that the stereoselectivity arises from a combination of weak interactions, including C-H···O, C-H···N, C-H···π, and LP···π. NHC could enhance the nucleophilicity of the aliphatic aldehyde and facilitate further reaction with hydrazone. This work could be beneficial for the development of new catalytic strategies in the future.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Yanlong Kang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Junjie Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| |
Collapse
|
6
|
Zhou N, Zhao F, Wang L, Gao X, Zhao X, Zhang M. Visible-Light-Induced Regioselective Cascade Radical Cyclization of α-Bromocarbonyls: Access to Benzazepine Derivatives. J Org Chem 2024; 89:2238-2246. [PMID: 38296256 DOI: 10.1021/acs.joc.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Visible-light-induced regioselective cascade radical cyclization of α-bromocarbonyls for the synthesis of benzazepine derivatives is described. In the presence of fac-Ir(ppy)3 (2.0 mol %) as a photocatalyst, 2,6-lutidine as a base, and dichloromethane as a solvent, the reactions proceed smoothly to afford seven-membered rings in good yields. This protocol features a broad substrate scope, excellent functional group tolerance, and mild reaction conditions. Preliminary mechanistic studies reveal that the generation of the α-carbon radical is more prone to react with the 1,1-diphenylethylene tethered acrylamide to generate the stable seven-membered heterocycle.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
7
|
Zhou N, Wang L, Zhao F, Gao X, Zhao X, Zhang M. NHC-Catalyzed Tandem Reaction: A Strategy for the Synthesis of 2-Pyrrolidinone-Functionalized Phenanthridines. J Org Chem 2023; 88:16556-16565. [PMID: 37971950 DOI: 10.1021/acs.joc.3c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, an N-heterocyclic carbene (NHC)-catalyzed tandem cyclization/addition/cyclization reaction of 2-isocyanobiaryls and α-bromo-N-cinnamylamides for the synthesis of 2-pyrrolidinone-functionalized phenanthridines is developed. This protocol features a radical cascade process, broad substrate scope, and good functional group compatibility under metal- and oxidant-free reaction conditions.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|