1
|
Zhang H, Guan S, Chen H, Zhang G, Chen Y. Direct Deoxygenation of Free Alcohols and Ketones. JACS AU 2025; 5:1932-1939. [PMID: 40313839 PMCID: PMC12042031 DOI: 10.1021/jacsau.5c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
This work presents a feasible method for the elimination of alcohol hydroxyls through the direct activation of typical alkyl alcohols using neutral boron radicals. This transformation necessitates a proficient reagent capable of swiftly activating the alcohol hydroxyl group to produce radicals, thereby circumventing numerous alternative side reactions associated with the alcohol hydroxyl group. To implement this method, we have created an innovative photocatalytic reaction system that oxidizes sodium tetraphenylboron to produce neutral boron radicals, which subsequently enable the direct homolytic conversion of alcohol hydroxyl groups. This deoxygenation technique necessitates no additional preactivation of the alcohol and yields favorable outcomes for the majority of alcohol substrates. The technique facilitates the direct methylene reduction of aldehydes and ketones. Mechanistic studies have established that the reaction likely initiates with the production of alcohols, thereafter undergoing dehydroxylation to yield methylene-reduced products.
Collapse
Affiliation(s)
- Haoyu Zhang
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Shiyong Guan
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Hanbo Chen
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Genhong Zhang
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yuegang Chen
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Zhejiang
Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| |
Collapse
|
2
|
Yang P, Wang L, Yan M, Yuan J, Xiao Y, Yang L, Xu X, Qu L. Visible-light-induced radical-cascade alkylation/cyclization of acrylamides: access to 3,3-dialkylated oxindoles. Org Biomol Chem 2025; 23:1653-1661. [PMID: 39777436 DOI: 10.1039/d4ob01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A visible-light-induced deoxygenative alkylation/cyclization of acrylamides with alcohols activated by CS2 has been developed by using xanthate salts as alkyl radical precursors in the presence of tricyclohexylphosphine. It proceeds through a tandem radical addition/cyclization process, and this protocol provides a reliable and practical approach to building the skeleton of 3,3-disubstituted oxindoles in moderate to good yields. Notable features of this reaction include readily available starting reagents, broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiujuan Xu
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Zhongyuan Institute of Science and Technology, Zhengzhou 451400, China
| |
Collapse
|
3
|
Ma P, Guo T, Lu H. Hydro- and deutero-deamination of primary amines using O-diphenylphosphinylhydroxylamine. Nat Commun 2024; 15:10190. [PMID: 39582045 PMCID: PMC11586428 DOI: 10.1038/s41467-024-54599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
While selective defunctionalizations are valuable in organic synthesis, hydrodeamination of primary amines poses challenges. Deuterodeamination, analogous to hydrodeamination, presents even greater difficulties due to its frequently slower deuteration rate, interference by hydrogenation and constraints in deuterated sources. This study introduces a reliable, robust, and scalable hydro- and deuterodeamination method capable of handling various primary amines. Defined by its mild reaction conditions, rapid completion, simplified purification facilitated by water-soluble byproducts, the method leverages deuterium oxide as a deuterium source and employs commercialized O-diphenylphosphinylhydroxylamine for deamination. Applied to a diverse range of biologically active molecules, it has consistently achieved high yields and efficient deuterium incorporation. By synergizing with site-selective C-H functionalization of primary aliphatic amines, our method reveals synthetic strategies utilizing nitrogen atom as a traceless directing group, encompassing deaminative alkylation, 1,1-deuteroalkylation, 1,1-dialkylation, 1,1,1-deuterodialkylation, C-H arylation, and 1,3-deuteroarylation. Emphasizing this innovation, the processes of deaminative degree-controlled deuteration have been developed.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ting Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Guo HM, Wang JJ, Xiong Y, Wu X. Visible-Light-Driven Multicomponent Reactions for the Versatile Synthesis of Thioamides by Radical Thiocarbamoylation. Angew Chem Int Ed Engl 2024; 63:e202409605. [PMID: 38975961 DOI: 10.1002/anie.202409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jia-Jin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Wang L, Yang P, Yuan J, Lian W, Jin X, Zhang S, Yang L, Xing D. Visible-Light-Promoted Deoxygenative Alkylation of Quinoxalin-2(1 H)-ones with Activated Alcohols. J Org Chem 2024; 89:6334-6344. [PMID: 38616699 DOI: 10.1021/acs.joc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A one-pot strategy for deoxygenative alkylation of alcohols with quinoxalin-2(1H)-ones was developed by using xanthate salts as alcohol-activating groups for radical generation in the presence of tricyclohexylphosphine under visible-light-promoted conditions. The remarkable features of this reaction include a broad substrate scope, excellent functional group tolerance, mild conditions, and simple operation. Moreover, the synthetic utility of this reaction was validated by the success of two-step one-pot reactions, scale-up synthesis, and chemoselective radical monodeoxygenation of diols.
Collapse
Affiliation(s)
- Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Lian
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xinrong Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Sanyu Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
6
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
7
|
Xiong Y, Wu X. Deoxygenative coupling of alcohols with aromatic nitriles enabled by direct visible light excitation. Org Biomol Chem 2023; 21:9316-9320. [PMID: 37982141 DOI: 10.1039/d3ob01676e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A general and practical protocol is presented for visible-light-driven deoxygenative coupling of alcohols with aromatic nitriles in the absence of external photocatalysts. Utilizing a hydroxyl activation strategy with carbon disulfide, this C(sp3)-C(sp2) constructing platform accommodates a broad scope of alcohols and aryl nitriles to deliver various alkyl-substituted arenes. Mechanism studies show that a single electron transfer event between a photoexcited aryl nitrile and a xanthate anion is key to the transformation.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|