1
|
Zhou C, Stepanova EV, Shatskiy A, Kärkäs MD, Dinér P. Visible light-mediated dearomative spirocyclization/imination of nonactivated arenes through energy transfer catalysis. Nat Commun 2025; 16:3610. [PMID: 40240355 PMCID: PMC12003774 DOI: 10.1038/s41467-025-58808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Aromatic compounds serve as key feedstocks in the chemical industry, typically undergoing functionalization or full reduction. However, partial reduction via dearomative sequences remains underexplored despite its potential to rapidly generate complex three-dimensional scaffolds and the existing dearomative strategies often require metal-mediated multistep processes or suffer from limited applicability. Herein, a photocatalytic radical cascade approach enabling dearomative difunctionalization through selective spirocyclization/imination of nonactivated arenes is reported. The method employs bifunctional oxime esters and carbonates to introduce multiple functional groups in a single step, forming spirocyclic motifs and iminyl functionalities via N-O bond cleavage, hydrogen-atom transfer, radical addition, spirocyclization, and radical-radical cross-coupling. The reaction constructs up to four bonds (C-O, C-C, C-N) from simple starting materials. Its broad applicability is demonstrated on various substrates, including pharmaceuticals, and it is compatible with scale-up under flow conditions, offering a streamlined approach to synthesizing highly decorated three-dimensional frameworks.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena V Stepanova
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Liu Q, Feng X, Xie F, Lai Y, Jiang H, Jiao Y, Wang J. Synthesis of Sulfenamides via Photoredox N-S Coupling of Dialkyl Azodicarboxylates and Thiols. Org Lett 2025; 27:409-414. [PMID: 39729373 DOI: 10.1021/acs.orglett.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
We herein report a photoredox N-S coupling reaction between dialkyl azodicarboxylates and thiols to access sulfenamide scaffolds. This reaction proceeds under mild, green, and operationally simple conditions, offering a broad scope of sulfenamides with high yields and excellent atom efficiency. Mechanistic investigations revealed this reaction followed a photoinitiated radical pathway in which iodide plays a crucial role as both a radical initiator and a single-electron reductant.
Collapse
Affiliation(s)
- Qun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoyun Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghao Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingchao Lai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Haokun Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yujing Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
4
|
Chen DN, Ye DD, Chen LN, Xia PJ. Nitrogen-Nitrogen Radical Coupling-Enabled Precise Difunctionalization of Carbon-Nitrogen Double Bonds. Org Lett 2024. [PMID: 39526584 DOI: 10.1021/acs.orglett.4c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, we have developed a metal-free, photoinduced energy transfer strategy for the efficient difunctionalization of carbon-nitrogen double bonds (C═N). Utilizing oxime ester-based bifunctional reagents, we have achieved direct radical difunctionalization of C═N bonds through nitrogen-nitrogen radical coupling, with over 35 examples and yields up to 96%. This method exhibits broad substrate scope, being compatible with a variety of carboxylic acids and biologically active molecules, thus offering a novel approach for the difunctionalization of heteroatom-containing unsaturated bonds in synthetic chemistry.
Collapse
Affiliation(s)
- Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dan-Dan Ye
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
5
|
Hohenadel M, Ebel B, Oppel IM, Patureau FW. Oxidative N-N Bond Formation Versus the Curtius Rearrangement. Chemistry 2024; 30:e202402355. [PMID: 38963800 DOI: 10.1002/chem.202402355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The oxidative formation of N-N bonds from primary amides has been recently reported and then retracted in the journal Nature Communications by Kathiravan, Nicholls, and co-authors, utilizing a hypervalent iodane reagent. Unfortunately, the authors failed to recognize the Curtius reaction taking place under the described reaction conditions. Thus, the claimed N-N coupling products were not formed. Instead, the Curtius rearrangement urea coupling products were obtained. We demonstrate this herein by means of NMR and x-ray analysis, as well as with the support of an alternative synthetic route.
Collapse
Affiliation(s)
- Melissa Hohenadel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ben Ebel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iris M Oppel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Liu M, Liu B, Chen H, Wang Q, Liu L, Feng K, Wang Z, Li Q. Synthesis of 2 H-imidazoles via copper-catalyzed homo/cross-coupling of oxime acetates. Org Biomol Chem 2024; 22:7316-7320. [PMID: 39171576 DOI: 10.1039/d4ob00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A facile and practical protocol to construct 2H-imidazoles by applying an oxime acetate block as the sole component via oxidative homo/cross-coupling catalyzed by Cu(I) was developed. This strategy provides a straightforward method to produce a series of substituted 2H-imidazoles in moderate to excellent yields. The transformation process is straightforward to operate and is considered as a readily available catalytic system exhibiting good substrate compatibility, eliminating the necessity for pre-functionalization of azides or the use of additives.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Hongyan Chen
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Zijia Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, P. R. China
| |
Collapse
|
7
|
He S, Feng B, Tang Y, Chen R, Guo Y, Koenigs RM. Photochemical α-amination of carbonyl groups with iodinanes. Chem Commun (Camb) 2024; 60:10128-10131. [PMID: 39189815 DOI: 10.1039/d4cc03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report on a photochemical reaction of silyl enol ethers with iminoiodinanes. This aza Rubottom reaction provides a direct access towards α-amino carbonyl compounds under catalyst free reaction conditions with light as the sole source of energy. Control experiments suggest the participation of triplet nitrene intermediates.
Collapse
Affiliation(s)
- Suyuan He
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Boya Feng
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yiben Tang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Ruiping Chen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yujing Guo
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Schäfer F, Lückemeier L, Glorius F. Improving reproducibility through condition-based sensitivity assessments: application, advancement and prospect. Chem Sci 2024:d4sc03017f. [PMID: 39263664 PMCID: PMC11382186 DOI: 10.1039/d4sc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The fluctuating reproducibility of scientific reports presents a well-recognised issue, frequently stemming from insufficient standardisation, transparency and a lack of information in scientific publications. Consequently, the incorporation of newly developed synthetic methods into practical applications often occurs at a slow rate. In recent years, various efforts have been made to analyse the sensitivity of chemical methodologies and the variation in quantitative outcome observed across different laboratory environments. For today's chemists, determining the key factors that really matter for a reaction's outcome from all the different aspects of chemical methodology can be a challenging task. In response, we provide a detailed examination and customised recommendations surrounding the sensitivity screen, offering a comprehensive assessment of various strategies and exploring their diverse applications by research groups to improve the practicality of their methodologies.
Collapse
Affiliation(s)
- Felix Schäfer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Lukas Lückemeier
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
9
|
Geniller L, Taillefer M, Jaroschik F, Prieto A. Photocatalyzed Amination of Alkyl Halides to Access Primary Amines. J Org Chem 2024; 89:656-664. [PMID: 38061988 DOI: 10.1021/acs.joc.3c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We demonstrate that oxime ester derivatives can be used as both a halogen atom transfer (XAT) agent and an imine source under photocatalytic conditions, allowing the radical amination of alkyl halides, resulting in the formation of a broad scope of imines. Hydrolysis of the latter gives direct access to the corresponding primary amines. Mechanistically, the reaction is believed to proceed through the formation of aryl radical intermediates, which are responsible for the activation of alkyl halides via XAT.
Collapse
Affiliation(s)
- Lilian Geniller
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Marc Taillefer
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|