1
|
Lagueux-Tremblay PL, Tam KM, Jiang M, Arndtsen BA. Electrifying Redox-Neutral Palladium-Catalyzed Carbonylations: Multielectron Transfer as a Catalyst Driving Force. J Am Chem Soc 2025. [PMID: 40262090 DOI: 10.1021/jacs.5c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Palladium-catalyzed bond-forming reactions such as carbonylations offer an efficient and versatile avenue to access products from often feedstock reagents. However, the use of catalysts also comes with a cost, as their need to be regenerated after each product-forming cycle requires balancing thermal operations. The latter can lead to high barriers even with catalysts as well as restrict their application to many products. We introduce herein an alternative approach to palladium catalyst design, where instead electrochemical potential can drive catalysis by continual two-electron cycling of the metal oxidation state. The power behind these redox steps offers a route to carry out carbonylation reactions, including the catalytic synthesis of high-energy aroyl halide electrophiles, at unprecedentedly mild ambient temperature and pressure. More generally, analysis suggests this catalyst functions by a distinct multi-electron exchange pathway, where two-electron reduction enables oxidative addition and two-electron oxidation drives product elimination. The combination creates a unique platform where both these reverse operations are favored in the same system and with electrochemical potential energy as the only added energy source.
Collapse
Affiliation(s)
| | - Kwan Ming Tam
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Meijing Jiang
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Ewing TEH, Kurig N, Yamaki YR, Sun J, Knowles TR, Gollapudi A, Kawamata Y, Baran PS. Pyrolytic Carbon: An Inexpensive, Robust, and Versatile Electrode for Synthetic Organic Electrochemistry. Angew Chem Int Ed Engl 2025; 64:e202417122. [PMID: 39449542 DOI: 10.1002/anie.202417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Synthetic organic electrochemistry is recognized as one of the most sustainable forms of redox chemistry that can enable a wide variety of useful transformations. In this study, readily prepared pyrolytic carbon electrodes are explored in several powerful rAP transformations as well as C-C and C-N bond forming reactions. Pyrolytic carbon provides an alternative to classic amorphous carbon-based materials that are either expensive or ill-suited to large-scale flow reactions.
Collapse
Affiliation(s)
- Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nils Kurig
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Jiawei Sun
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Timothy R Knowles
- KULR Technology Corp., 4863 Shawline St., Suite B, San Diego, CA, 92111, USA
| | - Asha Gollapudi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Guimarães EFS, Graça GAP, Diogo EBT, Almeida RG, Pereira DB, Araujo MH, da Silva CDG, Gatto CC, Ramos VFS, Menna-Barreto RFS, Jardim GAM, da Silva Júnior EN. Electrochemical Halogenation of Naphthoquinones: A Modular and Sustainable Strategy Towards Trypanocidal Compounds. Chem Asian J 2024; 19:e202401050. [PMID: 39323072 DOI: 10.1002/asia.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
An eco-friendly electrochemical halogenation of 2-amino-1,4-naphthoquinones has been developed. The new mild and energy efficient methodology comprises sustainable features like oxidant free and double role of the halogen source as electrolyte, originating twenty-six amino-halogenated naphthoquinoidal derivatives in good yields under mild conditions. This novel methodology permitted access to new potent trypanocidal prototypes, where six compounds were more active than benznidazole, the current market drug used in the treatment of Chagas Disease.
Collapse
Affiliation(s)
- Eduardo F S Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Emilay B T Diogo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Daiane B Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Caren D G da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Claudia C Gatto
- Instituto de Química, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Victor F S Ramos
- Laboratório de Biologia Celular, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Guilherme A M Jardim
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
4
|
Alam T, Gupta S, Patel BK. Electrochemical NH-Sulfoximidation with α-Keto Acids. Chemphyschem 2024; 25:e202400599. [PMID: 38884606 DOI: 10.1002/cphc.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
An electrochemical N-acylation of sulfoximine has been achieved via the coupling of α-keto acids and NH-sulfoximines. This process involves the sequential cleavage of C-C bond followed by C(sp2)-N bond formation, with the liberation of H2 and CO2 as the by-products. A library of N-aroylated sulfoximines is produced via the coupling of aroyl and sulfoximidoyl radicals by anodic oxidation under constant current electrolysis (CCE). The compatibility of the present protocol has been demonstrated by coupling of various bio-active compounds, such as NH-sulfoximine derived from (-)-borneol, L-menthol, D-glucose derivative, and some commercial drugs such as flurbiprofen, and ibuprofen. This late-stage functionalization highlights the importance of this sustainable protocol. Besides this, various control experiments and detection of H2 evolution have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
5
|
Hu M, Yang X, Zhang S, Qin C, Zhang Z, Wang J, Ji F, Jiang G. Electrochemical oxidative thioetherification of aldehyde hydrazones with thiophenols. Org Biomol Chem 2024; 22:5907-5912. [PMID: 38988186 DOI: 10.1039/d4ob00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An electrochemically promoted oxidative dehydrogenation cross-coupling reaction between aldehyde hydrazones and thiophenols is demonstrated for the first time, which resulted in a variety of (Z)-thioetherified products in moderate to excellent yields. This strategy can be carried out under an air atmosphere, featuring scalability and excellent stereoselectivity. In addition, the transformation efficiently produces readily recyclable disulfide as a by-product with high yields, which significantly reduces the environmental pollution caused by thioetherification.
Collapse
Affiliation(s)
- Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Xiaolin Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Zhihua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jingfang Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| |
Collapse
|
6
|
Zhang W, Jin D, Hu Y, Yin K, Zou Q, Tang L, Qian P. Electrochemically Enable N-Sulfenylation/Phosphinylation of Sulfoximines via Oxidative Dehydrocoupling Reaction. J Org Chem 2024; 89:6106-6116. [PMID: 38632856 DOI: 10.1021/acs.joc.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An electrochemical oxidative cross-coupling strategy for the synthesis of N-sulfenylsulfoximines from sulfoximines and thiols was accomplished, giving diverse N-sulfenylsulfoximines in moderate to good yields. Moreover, this strategy can be extended to construct the N-P bond of N-phosphinylated sulfoximines. With electrons as reagents, the oxidative dehydrogenation cross-coupling reaction proceeds smoothly in the absence of traditional redox reagents.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongkang Hu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Kun Yin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liang Tang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|