1
|
Dong T, Zhang Z, Li W, Zhuo W, Cui T, Li Z. Synthesis Principle and Practice with Radioactive Iodines and Astatine: Advances Made So Far. J Org Chem 2024; 89:11837-11863. [PMID: 39173032 DOI: 10.1021/acs.joc.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Radioactive iodines and astatine, possessing distinct exploitable nuclear properties, play indispensable roles in the realms of nuclear imaging and therapy. Their analogous chemical characteristics shape the design, preparation, and substrate range for tracers labeled with these radiohalogens through interconnected radiosynthetic chemistry. This perspective systematically explores the labeling methods by types of halogenating reagents─nucleophilic and electrophilic─underpinning the rational design of such compounds. It delves into the rapidly evolving synthetic strategies and reactions in radioiodination and radioastatination over the past decade, comparing their intrinsic relationships and highlighting variations. This comparative analysis illuminates potential radiosynthetic methods for exploration. Moreover, stability concerns related to compounds labeled with radioactive iodines and astatine are addressed, offering valuable insights for radiochemists and physicians alike.
Collapse
Affiliation(s)
- Taotao Dong
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integrations in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integrations in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Weicai Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integrations in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Weibin Zhuo
- Alpha Nuclide Co., Ltd., Ningbo, Zhejiang 315336, China
| | - Tongjiang Cui
- Alpha Nuclide Co., Ltd., Ningbo, Zhejiang 315336, China
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integrations in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
McErlain H, Andrews MJ, Watson AJB, Pimlott SL, Sutherland A. Ligand-Enabled Copper-Mediated Radioiodination of Arenes. Org Lett 2024; 26:1528-1532. [PMID: 38335124 PMCID: PMC10897930 DOI: 10.1021/acs.orglett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The discovery of a copper precatalyst that facilitates the key mechanistic steps of arene halodeboronation has allowed a step change in the synthesis of radioiodine-containing arenes. The active precatalyst [Cu(OAc)(phen)2]OAc was shown to perform room temperature radio-iododeboronation of aryl boronic acids with 1-2 mol % loadings and 10 min reaction times. These mild conditions enable particularly clean reactions, as demonstrated with the efficient preparation of the radiopharmaceutical and SPECT tracer, meta-iodobenzylguanidine (MIBG).
Collapse
Affiliation(s)
- Holly McErlain
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Matthew J Andrews
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, G12 OYN, U.K
| | | |
Collapse
|