1
|
Song S, Wang W, He Y, Cheng X, Chen Z, Zhou J, Li J. N-Phenylphenothiazine-based Hyper-cross-linked Polymers for Recyclable, Heterogeneous Photocatalysis of Organic Transformations: A Strategy to Access 6-Difluoromethyl-phenanthridines. Org Lett 2025; 27:1136-1141. [PMID: 39848622 DOI: 10.1021/acs.orglett.4c04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Herein, a N-phenylphenothiazine-based hyper-cross-linked polymer (PTH-HCP) was finely designed and constructed, which serves as a metal-free heterogeneous photocatalyst for organic transformations. Characterization experiments have shown that this polymer demonstrates outstanding stability, extensive surface area, and exceptional photoelectric response properties. Moreover, PTH-HCP showed good catalytic efficiency and recyclability in the photochemically driven difluoromethylation/cyclization reactions. This work provides a strategy for the design and construction of polymer photocatalysts and offers support for their broad prospects in synthetic applications.
Collapse
Affiliation(s)
- Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenjian Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yali He
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoye Cheng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
2
|
Guo Y, Yang D, Hu B, Duan Y, Cheng Y, Tang Y, Guo C, Li Y, Yu B. Late-stage-functionalization of anti-depressant molecule buspirone. Mol Divers 2024:10.1007/s11030-024-11029-x. [PMID: 39578294 DOI: 10.1007/s11030-024-11029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Buspirone, a well-established anxiolytic agent, has gained attention for its potential role as an antidepressant, primarily due to its unique pharmacological profile and the ability to modulate serotonin receptors effectively. Late-stage functionalization is considered as a pivotal strategy in drug synthesis that enhances the therapeutic efficacy of existing molecules. This review summarizes various late-stage functionalization techniques applicable to Buspirone, including photocatalyzed, metal-catalyzed, and enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Yalin Guo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Debin Yang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Bo Hu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yibing Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yu Tang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Caili Guo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yuanzhe Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Anandhan R, Prasanth K, Nithishkumar P. Purple light-induced Ritter-type reaction of diazophosphonates: access to α-amido-β-keto phosphonates. Org Biomol Chem 2024; 22:8401-8406. [PMID: 39329525 DOI: 10.1039/d4ob01212g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ritter-type reaction of diazophosphonates to synthesize α-amido-β-keto phosphonates has been reported in this study under purple light in the absence of a photocatalyst. This protocol shows that the synthesis of the amide functionality involves in situ generation of a carbene, followed by C-N bond formation with a nitrile. The purple LED irradiation alone is sufficient for the efficient transformation to afford synthetic routes to various amide moieties. A rationalization of the reaction mechanism was well supported by control experiments. A library of α-amido-β-keto phosphonates has been well documented for the synthetic community.
Collapse
Affiliation(s)
- Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | | |
Collapse
|
4
|
Jiang YF, Ouyang WT, Ji HT, Hou JC, Li T, Luo QX, Wu C, Ou LJ, He WM. Phototriggered Self-Catalyzed Phosphorylation of 3,4-Dihydroquinoxalin-2(1 H)-ones with Diarylphosphine Oxides in EtOH. J Org Chem 2024; 89:13970-13977. [PMID: 39298438 DOI: 10.1021/acs.joc.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A highly effective external photocatalyst- and additive-free method for the phosphorylation of 3,4-dihydroquinoxalin-2(1H)-ones to produce phosphorylated dihydroquinoxalin-2(1H)-ones has been reported. A wide variety of phosphorylated products were formed in good to excellent yields. Preliminary mechanistic studies reveal that the phosphorylation process involves an EnT process, a SET process, a HAT process, and a deprotonation process.
Collapse
Affiliation(s)
- Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qing-Xia Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Jiao Y, Shi X, Yang Y, Yu S. Photoredox-Catalyzed C-Indolyl/Quinolyl Glycosylation from 2-Styrylisocyanides and Glycosyl Bromides. Org Lett 2024; 26:8149-8153. [PMID: 39282973 DOI: 10.1021/acs.orglett.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Indole and quinoline structures are present in numerous biologically active molecules, making the synthesis of their glycosylation products a subject of extensive research and interest in drug development. Here, we report a photoredox strategy for the synthesis of C-indolyl and C-quinolyl glycosides using 2-styrylisocyanides and glycosyl bromides as building blocks. This approach offers mild reaction conditions, high α-selectivity, and scalability for large-scale reactions. The radical cyclization mode switching from 5-exo-trig to 6-endo-trig is achieved by selecting the substituents on the 2-vinyl group. This strategy enriches the toolbox of heterocyclic glycosylation methods and benefits advances in research on heteroaryl-based pharmaceuticals.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)
| | - Yiqiang Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)
| |
Collapse
|
6
|
Wang H, Xu L, Liu X, Shi Y, Yao Z, Zhou Y, Huang Q. NaIO 4/air-initiated phosphorylation of alcohols with H-phosphine oxides for the construction of P(O)-O bonds in water. Org Biomol Chem 2024; 22:7518-7523. [PMID: 39189981 DOI: 10.1039/d4ob01244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A facile and efficient protocol for P(O)-O bond formation was discovered through NaIO4/air-initiated phosphorylation of alcohols with H-phosphine oxides in water. This reaction showed good functional group tolerance and a broad substrate scope, providing an alternative method for constructing P(O)-O bonds. Mechanistic studies suggested that a phosphoryl radical-involving process from H-phosphine oxides facilitated the phosphorylation of alcohols under air.
Collapse
Affiliation(s)
- Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Lianhua Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Xiongwei Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Zhen Yao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Qiang Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
7
|
Liu J, Cui Z, Bi J, He X, Ding Q, Zhu H, Ma C. Photocatalytic fluoroalkylation by ligand-to-metal charge transfer. Front Chem 2024; 12:1481342. [PMID: 39308850 PMCID: PMC11412811 DOI: 10.3389/fchem.2024.1481342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Trifluoromethyl (CF3) and other fluoroalkyl groups are of great significance in the fields of pharmaceutical chemistry and agricultural chemicals. Fluoroalkyl acids, especially trifluoroacetic acid (TFA) is considered the most ideal fluoroalkylation reagent due to its low cost and easy availability. However, the extremely high oxidation potential requirement of TFA limits its wide application. In recent years, since visible-light-induced fluoroalkylation through the ligand-to-metal charge transfer (LMCT) process can overcome the above limitations, it has become an effective synthetic tool for the construction of fluorinated compounds with complex molecules and structures. In this review, according to the classification of different metal catalysts, we summarize the trifluoromethylation and fluoroalkylation of olefins, heteroaromatics, and terminal alkynes in different metal catalytic systems and their corresponding reaction mechanisms. The photocatalytic fluoroalkylation via LMCT is believed to expedite the development of fluoro-containing drugs, and more novel fluoroalkylation methologies using this strategy will be disclosed.
Collapse
Affiliation(s)
- Jingyi Liu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhenwei Cui
- Chongqing Aoshe Bio-Chemical Co., Ltd., Chongqing, China
| | - Jingjing Bi
- School of Pharmacy, Xinyang Agricultural and Forestry University, Xinyang, Henan, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hong Zhu
- Anesthesiology and Perioperative, Xinxiang Central Hospital, Xinxiang, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
8
|
Jia L, Lu Y, Chen Y, Zhong Y, Zhao F, Zhou Y. Visible-Light-Induced Metal- and Photosensitizer-Free C(sp 3)-H Phosphorylation of 3,4-Dihydroquinoxalin-2(1 H)-ones with Diphenylphosphine Oxide. J Org Chem 2024; 89:11659-11664. [PMID: 39088305 DOI: 10.1021/acs.joc.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Herein, we report a direct phosphorylation of the C(sp3)-H bond of 3,4-dihydroquinoxalin-2(1H)-ones using oxygen as a green oxidant under visible light at room temperature. This transformation was readily accomplished in the absence of metal and photosensitizer to construct new C(sp3)-P bonds and provide a series of phosphonylated dihydroquinoxalin-2-ones in good to excellent yields. This approach opens straightforward and environmentally friendly access to 3-phosphoryl quinoxalin-2-ones derivatives.
Collapse
Affiliation(s)
- Li Jia
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yanan Lu
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Ying Chen
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yu Zhong
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Fen Zhao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yongyun Zhou
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| |
Collapse
|
9
|
Ma C, Lindsley CW, Chang J, Yu B. Rational Molecular Editing: A New Paradigm in Drug Discovery. J Med Chem 2024; 67:11459-11466. [PMID: 38905482 DOI: 10.1021/acs.jmedchem.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Affiliation(s)
- Chunhua Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Craig W Lindsley
- Vanderbilt University Medical Center, Franklin, Tennessee 37027, United States
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Shen J, Li H, Li Y, Zhu Z, Luo K, Wu L. Visible-Light-Promoted Radical Cascade Sulfone Alkylation/Cyclization of 2-Isocyanoaryl Thioethers Enabled by Electron Donor-Acceptor Complex Formation. J Org Chem 2024; 89:10223-10233. [PMID: 38939958 DOI: 10.1021/acs.joc.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A photo-induced cascade sulfone alkylation/cyclization of 2-isocyanoaryl thioethers is explored. This visible-light-triggered reaction not only occurs under extremely mild reaction conditions but also does not require the presence of a photosensitizer. The photocatalytic process is triggered by the photochemical activity of in situ-generated electron donor-acceptor complexes, arising from the association of 2-isocyanoaryl thioethers and α-iodosulfones. The radical pathway was confirmed by UV-vis spectroscopy, radical trapping, Job's plot, and on/off irradiation experiments.
Collapse
Affiliation(s)
- Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Ouyang WT, Ji HT, Liu YY, Li T, Jiang YF, Lu YH, Jiang J, He WM. TEMPO/O 2 Synergistically Mediated BiBrO-Photocatalyzed Decarboxylative Phosphorylation of N-Arylglycines. Chemistry 2024; 30:e202304234. [PMID: 38644695 DOI: 10.1002/chem.202304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
With both TEMPO and O2 (in air) as the homogeneous redox mediators, BiBrO as the heterogeneous semiconductor photocatalyst, the first example of semi-heterogeneous photocatalytic decarboxylative phosphorylation of N-arylglycines with diarylphosphine oxides was established. A series of α-amino phosphinoxides were efficiently synthesized.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yuan-Yuan Liu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| |
Collapse
|
12
|
Liu X, Hao L, Wang Y, Yu X, Yang Z, Liu Y, Ji Y. Cu 2O-catalyzed cascade phosphinylation/cyclization of 2'-aminochalcones for the synthesis of hemi-indigo derivatives. Org Biomol Chem 2024; 22:4249-4253. [PMID: 38717449 DOI: 10.1039/d4ob00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A Cu2O-catalyzed cascade phosphinylation/cyclization reaction of 2'-aminochalcones and diphenylphosphine oxides to produce hemi-indigo derivatives has been developed. This strategy facilitates the sequential formation of a C-P bonds and a C-N bond in a single reaction step. Notably, the approach features one-pot operation, an earth-abundant copper catalyst, readily available starting materials, a broad substrate scope and high compatibility with functional groups, providing 33 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xiao Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Zhaoziyuan Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yiping Liu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. China.
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
13
|
Lu H, Wan Y, Wang Q, Li Y, Wu H, Ma N, Zhang Z, Zhang G. Aerobic Oxidative Hydroxylation of Arylboronic Acids under Visible-Light Irradiation without Metal Catalysts or Additives. Org Lett 2024; 26:1959-1964. [PMID: 38407134 DOI: 10.1021/acs.orglett.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phenols are versatile synthetic intermediates and key structural motifs in many natural products and biologically active compounds. We herein report a visible-light-induced aerobic oxidative hydroxylation of arylboronic acids/pinacol esters using air as oxidant and without using any catalysts and base, etc., additives, providing a green entry to a variety of phenols in a highly efficient and concise fashion. This novel reaction is enabled by photoactivation of an electron donor-acceptor complex, in which THF serves as both the solvent and electron donor. DFT studies indicated that the oxidation process involves a concerted hydrogen abstraction transfer from THF and dehydroxylation of boronic acid undergoing spin crossover from triplet to singlet to produce an active peroxoboronic acid intermidiate. Salient merits of this chemistry include broad substrate scope and excellent functional group tolerance, gram-scale synthesis, and versatile late-stage functionalizations as well as the use of air, visible light, and catalyst- and additive-free conditions. This strategy introduces a novel photoreaction mode with the aid of a solvent, offering a succinct and environmentally sustainable route for synthesizing phenols. The strong practicability and highly efficient access to modifying complex biorelevant molecules bode well for the potential applications of this chemistry in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Hongchen Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yameng Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Qiongjin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yabo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Xu G, Lv J, Ding Q, Ma C, Jiang Y, Yu B. Direct C-H Alkylation of Benzothiadiazoles via Organic Photoredox Catalysis. J Org Chem 2024; 89:2777-2781. [PMID: 38315024 DOI: 10.1021/acs.joc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
2,1,3-Benzothiadiazole is widely used as a privileged scaffold in pharmaceuticals and organic functional materials. Nonetheless, many current methods for the functionalization of 2,1,3-benzothiadiazole rely on preactivation, transition metal catalysts/promoters, or an elevated reaction temperature. Herein we disclose a transition-metal-free visible-light-induced photocatalytic method for the direct C-H alkylation of 2,1,3-benzothiadiazole using readily accessible carboxylic acid derivatives, i.e., N-hydroxyphthalimide esters (NHPEs), as alkylating reagents under room temperature. This mild and scalable method is highlighted by the late-stage installation of the benzothiadiazole scaffold in drugs and natural products.
Collapse
Affiliation(s)
- Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiayuan Lv
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
15
|
Gao F, Liao ZY, Ye YH, Yu QH, Yang C, Luo QY, Du F, Pan B, Zhong WW, Liang W. Photomediated Hydro(deutero)acylation of Olefins by Decarboxylative Addition of α-Oxocarboxylic Acids. J Org Chem 2024; 89:2741-2747. [PMID: 38299344 DOI: 10.1021/acs.joc.3c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Acyl radicals have been generated from the decarboxylation of α-oxocarboxylic acids by using a readily accessible organic pyrimidopteridine photoredox catalyst under ultraviolet-A (UV-A) light irradiation. These reactive acyl radicals were smoothly added to olefins such as styrenes and diverse Michael acceptors, with the assistance of H2O/D2O as hydrogen donors, enabling easy access to a diverse range of ketones/β-deuterio ketones. A wide range of α-oxocarboxylic acids are compatible with this reaction, which shows a reliable, atom-economical, and eco-friendly protocol. Furthermore, postsynthetic diversifications and applications are presented.
Collapse
Affiliation(s)
- Fan Gao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhi-Yu Liao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Cui Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wen-Wu Zhong
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Shapingba, Chongqing 401334, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|