Liu X, Zhang X, Wei D, Liu Z, Yang L. Innovative bioinspired hydrogel scaffolds enabling in-situ hybrid nanoflower integration for dual-mode acetylcholinesterase inhibitor profiling.
Biosens Bioelectron 2025;
271:117032. [PMID:
39665919 DOI:
10.1016/j.bios.2024.117032]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
This study introduces an innovative bioinspired hydrogel scaffold tailored to facilitate the in-situ integration of hybrid nanoflowers (HNFs) into the sensing interface, thereby establishing a versatile dual-mode platform for the sensitive profiling of acetylcholinesterase (AChE) inhibitors, a pivotal aspect in the pursuit of Alzheimer's disease therapeutics. Mimicking the tenacious anchoring of natural tree roots, our design employs magnetic bead imprinting with Strep-Tactin-coated magnetic beads (STMBs) to shape the hydrogel, which is then complemented by the integration of AChE-specific aptamers. This configuration creates a stable and biomimetic environment that nurtures HNF growth, thereby enhancing the binding integrity of HNFs with sensing interfaces. The platform's dual-mode detection capability, integrating both colorimetric and electrochemical sensing, is demonstrated through the effective evaluation of galantamine's inhibitory potency, with IC50 values that highlight its therapeutic potential. The hydrogel's exceptional reusability, maintaining over 95% of its initial activity after multiple uses, and its long-term stability, retaining 91% of its initial performance, further highlight its practicality and cost-effectiveness. In summary, this bioinspired hydrogel scaffold offers a novel, efficient, and dependable biosensing strategy for HNF-based biosensors, showing great potential for broad applications in medical diagnostics and advanced biosensing technologies.
Collapse