1
|
Yeom S, Ohmori K. One-Pot Synthesis of Functionalized Benzotropones via a Phthalide Ring-Opening/Intramolecular Aldol Condensation Cascade. Org Lett 2024; 26:5120-5124. [PMID: 38855901 DOI: 10.1021/acs.orglett.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A one-pot protocol was developed for the synthesis of functionalized benzotropone derivatives via a nucleophilic phthalide ring opening by a 5-lithiated dioxinone derivative, followed by an intramolecular aldol condensation. The method demonstrates exceptional versatility with diverse substrates, yielding a variety of functionalized benzotropones. Subsequent transformations of the obtained benzotropone derivatives were explored for their potential applications.
Collapse
Affiliation(s)
- Sangeun Yeom
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Ken Ohmori
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
2
|
Wei K, Zheng X, Zhang H. Recent applications of dioxinone derivatives for macrocyclic natural product and terpenoid synthesis. Front Chem 2022; 10:1030541. [PMID: 36578354 PMCID: PMC9790985 DOI: 10.3389/fchem.2022.1030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dioxinone derivatives, a class of acetoacetate derivatives, have attracted widespread attention because of their multiple reactive sites, high reactivity, unique chemical properties, and potential synthetic applications. The dioxinone group is also stable under a wide range of reaction conditions, including strong acids, as well as a variety of transition-metal-catalysed processes, such as olefin metathesis and Pd-mediated cross-coupling. The inherent reactivity and diverse applications of dioxinones make them valuable reactive intermediates in organic synthesis. The conversion of dioxinones to acylketenes and their subsequent nucleophilic capture is also an excellent strategy for synthesising β-keto acid derivatives, which can be applied even in complex molecular synthesis. This review focuses on the recent advances in the application of dioxinones in synthetic method research and the total synthesis of natural products, highlighting the exceptional utility of these synthetic methodologies in the construction of macrocyclic cores and terpenoid skeletons. In particular, successful transformations of dioxinone fragments are discussed.
Collapse
Affiliation(s)
- Kai Wei
- Henan Engineering Research Center of Funiu Mountain’s Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan, Henan, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| | - Xinhua Zheng
- Henan Engineering Research Center of Funiu Mountain’s Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan, Henan, China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Truax NJ, Ayinde S, Liu JO, Romo D. Total Synthesis of Rameswaralide Utilizing a Pharmacophore-Directed Retrosynthetic Strategy. J Am Chem Soc 2022; 144:18575-18585. [PMID: 36166374 DOI: 10.1021/jacs.2c08245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several Sinularia soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| |
Collapse
|
4
|
Aher RD, Ishikawa A, Yamanaka M, Tanaka F. Catalytic Enantioselective Construction of Decalin Derivatives by Dynamic Kinetic Desymmetrization of C2-Symmetric Derivatives through Aldol-Aldol Annulation. J Org Chem 2022; 87:8151-8157. [PMID: 35666096 DOI: 10.1021/acs.joc.2c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed and investigated a catalytic desymmetrization reaction strategy that affords functionalized decalin derivatives with high enantioselectivities from C2-symmetric derivatives through aldol-aldol annulation. We identified the structural moieties of the catalyst necessary for the formation of the decalin derivative with high enantioselectivity. We elucidated the mechanisms of the catalyzed reactions: the first aldol reaction step was reversible, and the second aldol step was rate-limiting and stereochemistry-determining and was enantioselective. Using theoretical calculations guided by the experimental results, we identified the interactions between the catalyst and the transition state that led to the major enantiomer. The information obtained in this study will be useful for the development of catalysts and chemical transformations.
Collapse
Affiliation(s)
- Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Atsuhiro Ishikawa
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Krishna Y, Tanaka F. Intramolecular Formal [4 + 2] Cycloadditions: Synthesis of Spiro Isoindolinone Derivatives and Related Molecules. Org Lett 2021; 23:1874-1879. [PMID: 33601884 DOI: 10.1021/acs.orglett.1c00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acid-catalyzed intramolecular reactions of isoindolinone-derived hydroxylactam derivatives bearing enones or enals that afford spiro isoindolinone derivatives and related molecules have been developed. From the hydroxylactam moieties, N-acylenamides were generated in situ and reacted with the enone and the enal moieties via formal [4 + 2] cycloaddition reactions to construct cyclohexanone- and dihydropyran-fused ring systems and the spiro ring systems.
Collapse
Affiliation(s)
- Yarkali Krishna
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol-Aldol Annulation of Pyruvate Derivatives with Cyclohexane-1,3-Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018; 57:13298-13301. [PMID: 30125444 DOI: 10.1002/anie.201808219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 01/12/2023]
Abstract
The decalin structure is found in bioactive molecules. We have developed catalytic enantioselective formal (4+2) cycloaddition reactions via aldol-aldol cascade reactions between pyruvate-derived diketoester derivatives and cyclohexane-1,3-dione derivatives that afford highly functionalized decalin derivatives. The reactions were performed using a quinidine-derived catalyst under mild conditions. Decalin derivatives bearing up to six chiral carbon centers including tetrasubstituted carbon centers were synthesized with high diastereo- and enantioselectivities. Five to six stereogenic centers were generated from achiral molecules with the formation of two C-C bonds in a single transformation resulting in the formation of the decalin system.
Collapse
Affiliation(s)
- Pandurang V Chouthaiwale
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
7
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol–Aldol Annulation of Pyruvate Derivatives with Cyclohexane‐1,3‐Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pandurang V. Chouthaiwale
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Ravindra D. Aher
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
8
|
Ghadari R. In silico study to evaluate the governing criteria in the BF3 catalyzed Diels-Alder reaction. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|