1
|
Doherty W, Conway L, Leveau B, Giulia Nacca F, Chiappa L, Riccio A, Roberts SM, Gabriella Santoro M, Evans P. 4-Aza Cyclopentenone Prostaglandin Analogues: Synthesis and NF-κB Inhibitory Activities. ChemMedChem 2025; 20:e202400823. [PMID: 39648152 DOI: 10.1002/cmdc.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Inspired by the cyclopentenone family of prostaglandins, a series of 4-aza, cross-conjugated cyclopentenones is described. Synthesised from N-protected (4R)-aza-cyclopentenone 5, the exocyclic alkene was installed using a modified Baylis-Hillman type aldol reaction, whereby carbon-carbon bond formation is accompanied by dehydration. In this manner octanal and octenal, for example, can be introduced to mimic the ω-group present in the natural prostaglandins. Similarly, a focused range of alternative substituents were introduced using different aldehydes and ketones. The presence of the tert-butyloxycarbonyl (Boc) group on the 4-amino-cyclopentenone substituent enabled subsequent derivatisation and various electrophiles were successfully incorporated. The ability of the family of 4-amino functionalised cross-conjugated cyclopentenones to block activation of nuclear factor-kappa B (NF-κB) was studied and compared with the natural prostanoid, Δ12,14-15-deoxy-PGJ2 (2). Thereafter, the synthesis of a series of thiol adducts from these compounds were prepared and similarly evaluated biologically. The adducts showed comparable and, on occasion, more potent inhibition of NF-κB than their cyclopentenone precursors and generally demonstrated diminished cytotoxicity. For example, cross-conjugated dieneone 12 inhibited the activation of NF-κB with an IC50 value of 6.2 μM, whereas its endocyclic N-Boc (27) and N-acetyl (28) cysteine adducts blocked NF-κB activity with values of 1.0 and 8.0 μM respectively.
Collapse
Affiliation(s)
- William Doherty
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | - Lorna Conway
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | - Brian Leveau
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | | | - Lucia Chiappa
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Stanley M Roberts
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Paul Evans
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| |
Collapse
|
2
|
Yin Y, Wang J, Li J. A concise and scalable chemoenzymatic synthesis of prostaglandins. Nat Commun 2024; 15:2523. [PMID: 38514642 PMCID: PMC10957970 DOI: 10.1038/s41467-024-46960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Prostaglandins have garnered significant attention from synthetic chemists due to their exceptional biological activities. In this report, we present a concise chemoenzymatic synthesis method for several representative prostaglandins, achieved in 5 to 7 steps. Notably, the common intermediate bromohydrin, a radical equivalent of Corey lactone, is chemoenzymatically synthesized in only two steps, which allows us to complete the synthesis of prostaglandin F2α in five steps on a 10-gram scale. The chiral cyclopentane core is introduced with high enantioselectivity, while the lipid chains are sequentially incorporated through a cost-effective process involving bromohydrin formation, nickel-catalyzed cross-couplings, and Wittig reactions. This cost-efficient synthesis route for prostaglandins holds the potential to make prostaglandin-related drugs more affordable and facilitate easier access to their analogues.
Collapse
Affiliation(s)
- Yunpeng Yin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Celik IE, Mittendorf F, Gómez-Suárez A, Kirsch SF. Formal synthesis of bastimolide A using a chiral Horner-Wittig reagent and a bifunctional aldehyde as key building blocks. TETRAHEDRON CHEM 2024; 9:100065. [DOI: 10.1016/j.tchem.2024.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wang X, Wang Z, Ma X, Huang Z, Sun K, Gao X, Fu S, Liu B. Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angew Chem Int Ed Engl 2022; 61:e202200258. [PMID: 35102682 DOI: 10.1002/anie.202200258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 01/14/2023]
Abstract
The asymmetric total synthesis of three lindenane sesquiterpenoid oligomers, shizukaol J, trichloranoid C and trishizukaol A, has been accomplished concisely in 15, 16 and 18 longest linear steps, respectively. The expeditious construction of molecular architectures was facilitated by Nelson's catalytic asymmetric ketene-aldehyde cycloaddition, a sequence of allylic alkylation/reduction/acidic cyclization to forge a lactone, and a double aldol condensation cascade to construct the 5/6 bicyclic system. Diastereoselective nucleophilic substitution promoted by a phase transfer catalyst constructed the C11 quaternary stereogenic center, thus prompting synthetic efficacy toward shizukaol J. The synthesis of trichloranoid C and trishizukaol A was achieved after a cascade involving furanyl diene formation and a Diels-Alder reaction, as well as a one-pot sequence involving furan oxidation and global deprotection. Furthermore, our biological evaluation revealed that two compounds exhibited unexpected toxicity against tumor cell lines.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Zhuang Wang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Xianjian Ma
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Zhengsong Huang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Ke Sun
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Rd., Xiamen, Fujian, 361102, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Rd., Xiamen, Fujian, 361102, China
| | - Shaomin Fu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
5
|
Wang X, Wang Z, Ma X, Huang Z, Sun K, Gao X, Fu S, Liu B. Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Zhuang Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Xianjian Ma
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Zhengsong Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ke Sun
- School of Pharmaceutical Sciences Xiamen University South Xiangan Rd. Xiamen Fujian 361102 China
| | - Xiang Gao
- School of Pharmaceutical Sciences Xiamen University South Xiangan Rd. Xiamen Fujian 361102 China
| | - Shaomin Fu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Bo Liu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| |
Collapse
|
6
|
Gimazetdinov AM, Al’mukhametov AZ, Miftakhov MS. Development of a new approach for the synthesis of (+)-15-deoxy-Δ 12,14-prostaglandin J 2 methyl ester based on the [2+2]-cycloadduct of 5-trimethylsilylcyclopentadiene and dichloroketene. NEW J CHEM 2022. [DOI: 10.1039/d2nj01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper described a first example of the application of the “abnormal” lactone of 3-oxabicyclo[3.3.0]oct-6-en-2-one topology in targeted prostaglandin synthesis.
Collapse
Affiliation(s)
- Airat M. Gimazetdinov
- Ufa Institute of Chemistry (UfIC), Ufa Federal Research Centre of the Russian Academy of Sciences (UFIC RAS) Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
| | - Aidar Z. Al’mukhametov
- Ufa Institute of Chemistry (UfIC), Ufa Federal Research Centre of the Russian Academy of Sciences (UFIC RAS) Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
| | - Mansur S. Miftakhov
- Ufa Institute of Chemistry (UfIC), Ufa Federal Research Centre of the Russian Academy of Sciences (UFIC RAS) Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
| |
Collapse
|
7
|
Conway L, Evans P. An enantiodivergent synthesis of N-Boc-protected (R)- and (S)-4-amino cyclopent-2-en-1-one. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211047780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Routes are reported for the synthesis of both (1 R)- and (1 S)- tert-butyl-(4-oxocyclopent-2-en-1-yl)carbamate 2. Featuring Mitsunobu reactions with di- tert-butyl iminodicarbonate, both syntheses begin from ( S)-4-[( tert-butyldimethylsilyl)oxy]cyclopent-2-en-1-one (3) and take advantage of the 1,4-cyclopentenyl dioxygenation pattern of this optically active starting material. Thus both (−)- and (+)-2 have been accessed from 3 in an enantiodivergent manner in 11% and 10% overall yield over five and seven reaction steps, respectively.
Collapse
Affiliation(s)
- Lorna Conway
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Vostrikov NS, Zagitov VV, Lobov AN, Ishmetova DV, Vakhitova YV, Miftakhov MS. Chemical F/J‐Interconversion in the Prostaglandin Family: From Cloprostenol to Its Δ
12
‐J
2
and 15‐Deoxy‐Δ
12,14
‐J
2
Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nikolay S. Vostrikov
- Ufa Institute of Chemistry UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| | - Vadim V. Zagitov
- Ufa Institute of Chemistry UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| | - Alexander N. Lobov
- Ufa Institute of Chemistry UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| | - Diana V. Ishmetova
- Institute of Biochemistry and Genetics UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| | - Yulia V. Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| | - Mansur S. Miftakhov
- Ufa Institute of Chemistry UFRC RAS 71 pr. Oktyabrya Ufa Russian Federation 450054
| |
Collapse
|
9
|
Zhu K, Jiang M, Ye B, Zhang GT, Li W, Tang P, Huang Z, Chen F. A unified strategy to prostaglandins: chemoenzymatic total synthesis of cloprostenol, bimatoprost, PGF 2α, fluprostenol, and travoprost guided by biocatalytic retrosynthesis. Chem Sci 2021; 12:10362-10370. [PMID: 34377422 PMCID: PMC8336452 DOI: 10.1039/d1sc03237b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Development of efficient and stereoselective synthesis of prostaglandins (PGs) is of utmost importance, owing to their valuable medicinal applications and unique chemical structures. We report here a unified synthesis of PGs cloprostenol, bimatoprost, PGF2α, fluprostenol, and travoprost from the readily available dichloro-containing bicyclic ketone 6a guided by biocatalytic retrosynthesis, in 11-12 steps with 3.8-8.4% overall yields. An unprecedented Baeyer-Villiger monooxygenase (BVMO)-catalyzed stereoselective oxidation of 6a (99% ee), and a ketoreductase (KRED)-catalyzed diastereoselective reduction of enones 12 (87 : 13 to 99 : 1 dr) were utilized in combination for the first time to set the critical stereochemical configurations under mild conditions. Another key transformation was the copper(ii)-catalyzed regioselective p-phenylbenzoylation of the secondary alcohol of diol 10 (9.3 : 1 rr). This study not only provides an alternative route to the highly stereoselective synthesis of PGs, but also showcases the usefulness and great potential of biocatalysis in construction of complex molecules.
Collapse
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Baijun Ye
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Guo-Tai Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China .,Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China.,Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
10
|
Conway L, Riccio A, Santoro MG, Evans P. Synthesis of the 4-aza cyclopentenone analogue of Δ12,14-15-deoxy-PGJ2 and S-cysteine adducts. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
The formal synthesis of (+)-15-deoxy-Δ12,14-prostaglandin J2 by utilizing SmI2-promoted intramolecular coupling of bromoalkynes and α,β-unsaturated esters. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Burstein SH. The chemistry, biology and pharmacology of the cyclopentenone prostaglandins. Prostaglandins Other Lipid Mediat 2020; 148:106408. [PMID: 31931079 DOI: 10.1016/j.prostaglandins.2020.106408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
The cyclopentenone prostaglandins (CyPGs) are a small group compounds that are a subset of the eicosanoid superfamily, which are metabolites of arachidonic acid as well as other polyunsaturated fatty acids. The CyPGs are defined by a structural feature, namely, a five-membered carbocyclic ring containing an alfa-beta unsaturated keto group. The two most studied members are PGA2 and 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2); other less studied members are PGA1, Δ12-PGJ2, and PGJ2. They are involved in a number of biological activities including the ability to resolve chronic inflammation and the growth and survival of cells, particularly those of cancerous or neurological origin. Also, they can activate the prostaglandin DP2 receptor as well as the ligand-dependent transcription factor PPAR-gamma. Their ability to promote the resolution of chronic inflammation makes it of particular interest to have a good understanding of their actions. Since their discovery, the literature on the CyPGs has greatly expanded both in size and in scope; these reports are covered in the current review.
Collapse
Affiliation(s)
- Sumner H Burstein
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
13
|
Li J, Stoltz BM, Grubbs RH. Enantioselective Synthesis of 15-Deoxy-Δ 12,14-Prostaglandin J 2. Org Lett 2019; 21:10139-10142. [PMID: 31808699 DOI: 10.1021/acs.orglett.9b04198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An enantioselective synthesis of 15-deoxy-Δ12,14-prostaglandin J2 is reported. The synthesis begins with the preparation of enantiopure 3-oxodicyclopentadiene by a lipase-mediated kinetic resolution. A three-component coupling followed by a retro-Diels-Alder reaction provides the C8 stereochemistry of the prostaglandin skeleton with high enantioselectivity. Stereoretentive olefin metathesis followed by a Pinnick oxidation affords 15-deoxy-Δ12,14-prostaglandin J2 in high enantiopurity.
Collapse
Affiliation(s)
- Jiaming Li
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard, MC 101-20 , Pasadena , California 91125 , United States
| | - Robert H Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
14
|
Vostrikov NS, Zagitov VV, Miftakhov MS. New 11,13-Dienone Analog of Cloprostenol. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gimazetdinov AM, Al’mukhametov AZ, Miftakhov MS. Synthetic Approaches to 15-Deoxy-Δ12,14-prostaglandin J2. A New Key Building Block Based on (3aR,6R,6aS)-6-Trimethylsilyl)-3,3a,6,6a-tetrahydro-1H-cyclopenta[c]furan-1-one. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vostrikov NS, Spirikhin LV, Lobov AN, Gimazetdinov AM, Zileeva ZR, Vakhitova YV, Macaev ZR, Pivnitsky KK, Miftakhov MS. Simple antitumor model compounds for cross-conjugated cyclopentenone prostaglandins. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abis G, Charles RL, Kopec J, Yue WW, Atkinson RA, Bui TTT, Lynham S, Popova S, Sun YB, Fraternali F, Eaton P, Conte MR. 15-deoxy-Δ 12,14-Prostaglandin J 2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Commun Biol 2019; 2:188. [PMID: 31123712 PMCID: PMC6525171 DOI: 10.1038/s42003-019-0426-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors.
Collapse
Affiliation(s)
- Giancarlo Abis
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Rebecca L. Charles
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - R. Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Tam T. T. Bui
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, The James Black Centre, King’s College London, London, SE5 9NU UK
| | - Simona Popova
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Philip Eaton
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| |
Collapse
|
18
|
Zhu K, Hu S, Liu M, Peng H, Chen F. Access to a Key Building Block for the Prostaglandin Family via Stereocontrolled Organocatalytic Baeyer–Villiger Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Haihui Peng
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules Shanghai 200433 China
| |
Collapse
|
19
|
Zhu K, Hu S, Liu M, Peng H, Chen FE. Access to a Key Building Block for the Prostaglandin Family via Stereocontrolled Organocatalytic Baeyer-Villiger Oxidation. Angew Chem Int Ed Engl 2019; 58:9923-9927. [PMID: 30983061 DOI: 10.1002/anie.201902371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/20/2022]
Abstract
A new protocol for the construction of a crucial bicyclic lactone of prostaglandins using a stereocontrolled organocatalytic Baeyer-Villiger (B-V) oxidation was developed. The key B-V oxidation of a racemic cyclobutanone derivative with aqueous hydrogen peroxide has enabled an early-stage construction of a bicyclic lactone skeleton in high enantiomeric excess (up to 95 %). The generated bicyclic lactone is fully primed with two desired stereocenters and enabled the synthesis of the entire family of prostaglandins according to Corey's route. Furthermore, the reactivity and enantioselectivity of B-V oxidation of racemic bicyclic cyclobutanones were evaluated and 90-99 % ee was obtained, representing one of the most efficient routes to chiral lactones. This study further facilitates the synthesis of prostaglandins and chiral lactone-containing natural products to promote drug discovery.
Collapse
Affiliation(s)
- Kejie Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Haihui Peng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules, Shanghai, 200433, China
| |
Collapse
|
20
|
Loza VV, Gimazetdinov AM, Miftakhov MS. Cross-Conjugated Cyclopentenone Prostaglandins. Recent Advances. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428018110015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
|
22
|
Li J, Ahmed TS, Xu C, Stoltz BM, Grubbs RH. Concise Syntheses of Δ 12-Prostaglandin J Natural Products via Stereoretentive Metathesis. J Am Chem Soc 2018; 141:154-158. [PMID: 30537831 DOI: 10.1021/jacs.8b12816] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Δ12-Prostaglandin J family is recently discovered and has potent anticancer activity. Concise syntheses of four Δ12-prostaglandin J natural products (7-8 steps in the longest linear sequences) are reported, enabled by convergent stereoretentive cross-metathesis. Exceptional control of alkene geometry was achieved through stereoretention.
Collapse
Affiliation(s)
- Jiaming Li
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Tonia S Ahmed
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Chen Xu
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518000 , China
| | - Brian M Stoltz
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Robert H Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
23
|
Abrams DJ, Provencher PA, Sorensen EJ. Recent applications of C-H functionalization in complex natural product synthesis. Chem Soc Rev 2018; 47:8925-8967. [PMID: 30426998 DOI: 10.1039/c8cs00716k] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, recent examples featuring C-H functionalization in the synthesis of complex natural products are discussed. A focus is given to the way in which C-H functionalization can influence the logical process of retrosynthesis, and the review is organized by the type and method of C-H functionalization.
Collapse
Affiliation(s)
- Dylan J Abrams
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
24
|
Peng H, Chen FE. Recent advances in asymmetric total synthesis of prostaglandins. Org Biomol Chem 2018; 15:6281-6301. [PMID: 28737187 DOI: 10.1039/c7ob01341h] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostaglandins (PGs) are a series of hormone-like chemical messengers and play a critical role in regulating physiological activity. The diversified therapeutic activities and complex molecular architectures of PGs have attracted special attention, and huge progress has been made in asymmetric total synthesis and discovery of pharmaceutically useful drug candidates. In the last 10 years, several powerful syntheses have emerged as new solutions to the problem of building PGs and represent major breakthroughs in this area. This review highlights the advances in methodologies for the asymmetric total synthesis of prostaglandins. The application of these methodologies in the syntheses of medicinally useful prostaglandins is also described. The study has been carefully categorized according to the key procedures involved in the syntheses of various prostaglandins, aiming to give readers an easy understanding of this chemistry and provide insights for further improvements.
Collapse
Affiliation(s)
- Haihui Peng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | | |
Collapse
|
25
|
Yakura T, Nambu H. Recent topics in application of selective Rh(II)-catalyzed C H functionalization toward natural product synthesis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Takahashi K, Arai Y, Honda T. The formal synthesis of (+)-15-deoxy-Δ12,14-prostaglandin J2: Controlling exo-olefin geometry via SmI2-mediated cyclization. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
28
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
29
|
Brady PB, Bhat V. Recent Applications of Rh- and Pd-Catalyzed C(sp3)-H Functionalization in Natural Product Total Synthesis. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700641] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patrick B. Brady
- Oncology Discovery; AbbVie, Inc.; 1 N Waukegan Road 60064 North Chicago IL USA
| | - Vikram Bhat
- Oncology Discovery; AbbVie, Inc.; 1 N Waukegan Road 60064 North Chicago IL USA
| |
Collapse
|
30
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Freigang S. The regulation of inflammation by oxidized phospholipids. Eur J Immunol 2016; 46:1818-25. [PMID: 27312261 DOI: 10.1002/eji.201545676] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
During inflammation or under conditions of oxidative stress, the polyunsaturated fatty acid side chains of phospholipids in cellular membranes or lipoproteins can be oxidatively modified. This process generates a complex mixture of structurally diverse oxidized phospholipid (OxPL) species, each of which may exert distinct biological effects. The presence of OxPLs has been documented in acute and chronic microbial infections, metabolic disorders, and degenerative diseases. It is now well recognized that OxPLs actively influence biological processes and contribute to the induction and resolution of inflammation. While many pro- and anti-inflammatory effects have been documented for bulk OxPL preparations, we are only beginning to understand the exact molecular mechanisms and signaling events that mediate the individual proinflammatory or anti-inflammatory bioactivities of discrete isolated OxPL species. Here, we review the current knowledge on the regulation of inflammation by OxPLs and summarize recent studies that establish cyclopentenone-containing OxPLs as a category of potent anti-inflammatory lipid mediators.
Collapse
Affiliation(s)
- Stefan Freigang
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Cyclopentenone-containing oxidized phospholipids and their isoprostanes as pro-resolving mediators of inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:382-392. [PMID: 27422370 DOI: 10.1016/j.bbalip.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Inflammation represents a powerful innate immune response that defends tissue homeostasis. However, the appropriate termination of inflammatory processes is essential to prevent the development of chronic inflammatory disorders. The resolution of inflammation is actively induced by specialized pro-resolving lipid mediators, which include eicosanoids, resolvins, protectins and maresins. The responsible pro-resolution pathways have emerged as promising targets for anti-inflammatory therapies since they mitigate excessive inflammation without compromising the anti-microbial defenses of the host. We have recently shown that the lipid peroxidation of membrane phospholipids, which is associated with inflammatory conditions, generates oxidized phospholipid (OxPL) species with potent pro-resolving activities. These pro-resolving OxPLs contain a cyclopentenone as their common determinant, and are structurally and functionally related to endogenous pro-resolving prostaglandins. Here, we review the regulation of inflammatory responses by OxPLs with particular focus on the bioactivities and structural characteristics of cyclopentenone-OxPLs, and discuss the impact of the responsible signaling pathways on inflammatory diseases. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
|
33
|
15d-Prostaglandin J2 induced reactive oxygen species-mediated apoptosis during experimental visceral leishmaniasis. J Mol Med (Berl) 2016; 94:695-710. [PMID: 26830627 DOI: 10.1007/s00109-016-1384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED 15-Deoxy-delta (12,14)-prostaglandin J2 (15d-PgJ2) is a potent bioactive lipid mediator, known to possess several roles in cell regulation and differentiation along with antimicrobial efficacy against different bacterial and viral infections. In the present study, we investigated the therapeutic efficacy and mechanism of action of 15d-PgJ2 in vitro in Leishmania donovani promastigotes and infected J774 macrophages, and in vivo in Balb/c mice/golden hamster model of experimental visceral leishmaniasis. 15d-PgJ2 effectively killed L. donovani promastigotes and amastigotes in vitro with IC50 of 104.6 and 80.09 nM, respectively. At 2 mg/kg (mice) and 4 mg/kg (hamster) doses, 15d-PgJ2 decreased >90 % spleen and liver parasite burden. It significantly reduced interleukin (IL)-10 and transforming growth factor (TGF)-β synthesis in infected macrophages and splenocytes. 15d-PgJ2 induced reactive oxygen species (ROS)-dependent apoptosis of promastigotes by triggering phosphatidyl serine externalization, mitochondrial membrane damage and inducing caspase-like activity. In vitro drug interaction studies revealed an indifference to the synergistic association of 15d-PgJ2 with Miltefosine and Amphotericin-B (Amp-B). Moreover, when combined with sub-curative doses of Miltefosine and Amphotericin-B, 15d-PgJ2 resulted in >95 % parasite removal. Our results suggested that 15d-PgJ2 induces mitochondria-dependent apoptosis of L. donovani and is a good therapeutic candidate for adjunct therapy against experimental visceral leishmaniasis. KEY MESSAGE 15d-PgJ2 effectively eliminated both promastigotes and amastigotes form of L. donovani. 15d-PgJ2 decreased parasite burden from infected mice and hamsters with reduced Th2 cytokines. 15d-PgJ2 induced ROS-mediated mitochondrial apoptosis of L. donovani promastigotes. 15d-PgJ2 is a good therapeutic candidate for adjunct therapy with Miltefosine and Amp-B.
Collapse
|