1
|
Jolly CS, Kochanowski E, Dodd CJ, Post SJ, Hill HM, Turlington M. Diastereoselective Synthesis of Terminal Bromo-Substituted Propargylamines via Generation of Lithium Bromoacetylide and Addition to Chiral N- tert-Butanesulfinyl Aldimines. J Org Chem 2021; 86:2667-2681. [PMID: 33448846 DOI: 10.1021/acs.joc.0c02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereoselective synthesis of terminal bromo-substituted propargylamines via in situ generation of lithium bromoacetylide from 1,2-dibromoethene and addition to Ellman chiral N-tert-butanesulfinyl aldimines is reported. Modest to good yields (43-85%) and diastereoselectivity (dr = 3:1 to >20:1) were achieved for a range of aryl, heteroaryl, alkyl, and α,β-unsaturated substrates. Terminal bromo-substituted propargylamines prepared via this method can be directly used in the frequently employed Cadiot-Chodkiewicz coupling to produce functionalized diynes. The method reported here increases the structural diversity of chiral terminal bromo-substituted propargylamines that can be readily synthesized as previous methods for the stereoselective synthesis of these compounds rely on amino acid precursors from the chiral pool.
Collapse
Affiliation(s)
- Charles S Jolly
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Emma Kochanowski
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Cayden J Dodd
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Savannah J Post
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Harrison M Hill
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Department of Chemistry & Biochemistry, Berry College, Mount Berry, Georgia 30149, United States
| |
Collapse
|
2
|
Foubelo F, Yus M. Chiral N-tert-Butylsulfinyl Imines: New Discoveries. CHEM REC 2020; 21:1300-1341. [PMID: 33241905 DOI: 10.1002/tcr.202000122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Indexed: 12/21/2022]
Abstract
In this account the reactions of chiral N-tert-butylsulfinyl imines with organometallic reagents such as organoalkaline (lithium, sodium, potassium and cesium derivatives), organomagnesium, organozinc, organoboron, organoaluminium, organoindium and organosilicon compounds is comprehensively described. The reactivity in all cases is derived to synthetic applications in order to prepare interesting organic nitrogenated molecules, especially in the field of alkaloid compounds.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
4
|
Xiong X, Chen H, Liao X, Lai S, Gao L. KA2
-Coupling Reaction Catalyzed by Semi-Heterogeneous Magnetically Graphene Oxide Supported Copper Catalyst under Microwave Condition. ChemistrySelect 2018. [DOI: 10.1002/slct.201801516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xingquan Xiong
- College of Materials Science and Engineering; University of Huaqiao; Xiamen 361021 China
| | - Huixin Chen
- College of Materials Science and Engineering; University of Huaqiao; Xiamen 361021 China
| | - Xu Liao
- College of Materials Science and Engineering; University of Huaqiao; Xiamen 361021 China
| | - Shilin Lai
- College of Materials Science and Engineering; University of Huaqiao; Xiamen 361021 China
| | - Lizhu Gao
- College of Materials Science and Engineering; University of Huaqiao; Xiamen 361021 China
| |
Collapse
|
5
|
Lauder K, Toscani A, Scalacci N, Castagnolo D. Synthesis and Reactivity of Propargylamines in Organic Chemistry. Chem Rev 2017; 117:14091-14200. [PMID: 29166000 DOI: 10.1021/acs.chemrev.7b00343] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Propargylamines are a versatile class of compounds which find broad application in many fields of chemistry. This review aims to describe the different strategies developed so far for the synthesis of propargylamines and their derivatives as well as to highlight their reactivity and use as building blocks in the synthesis of chemically relevant organic compounds. In the first part of the review, the different synthetic approaches to synthesize propargylamines, such as A3 couplings and C-H functionalization of alkynes, have been described and organized on the basis of the catalysts employed in the syntheses. Both racemic and enantioselective approaches have been reported. In the second part, an overview of the transformations of propargylamines into heterocyclic compounds such as pyrroles, pyridines, thiazoles, and oxazoles, as well as other relevant organic derivatives, is presented.
Collapse
Affiliation(s)
- Kate Lauder
- School of Cancer and Pharmaceutical Sciences, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Anita Toscani
- School of Cancer and Pharmaceutical Sciences, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nicolò Scalacci
- School of Cancer and Pharmaceutical Sciences, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
6
|
Wünsch M, Schröder D, Fröhr T, Teichmann L, Hedwig S, Janson N, Belu C, Simon J, Heidemeyer S, Holtkamp P, Rudlof J, Klemme L, Hinzmann A, Neumann B, Stammler HG, Sewald N. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics. Beilstein J Org Chem 2017; 13:2428-2441. [PMID: 29234470 PMCID: PMC5704752 DOI: 10.3762/bjoc.13.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman's chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics.
Collapse
Affiliation(s)
- Matthias Wünsch
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - David Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Tanja Fröhr
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lisa Teichmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sebastian Hedwig
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Nils Janson
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Clara Belu
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jasmin Simon
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Shari Heidemeyer
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Philipp Holtkamp
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jens Rudlof
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lennard Klemme
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alessa Hinzmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|