1
|
Molga K, Beker W, Roszak R, Czerwiński A, Grzybowski BA. Hierarchical Reaction Logic Enables Computational Design of Complex Peptide Syntheses. J Am Chem Soc 2025; 147:7644-7662. [PMID: 39977835 DOI: 10.1021/jacs.4c17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The prevalent assumption in computer-assisted synthesis planning has been to rely on the wealth of reaction data and on the consideration of this vast knowledge base at every stage of route planning. Yet even if equipped with all requisite knowledge of individual reaction transforms and state-of-the-art search algorithms, the existing programs struggle when confronted with advanced targets, such as the complex peptides this work considers. By contrast, when the searches are constrained by hierarchical logic, dictating which subsets of reactions to apply at different stages of synthesis planning, these algorithms are able to plan, within minutes, complete routes to clinically relevant targets as complex as vancomycin and as large as semaglutide. Despite not being trained on any literature precedents, the routes designed by the algorithm mimic the strategies used by human experts. The hierarchical planning we describe incorporates protecting-group strategies and realistic pathway pricing and can be performed in solid-state or solution modes, in the latter case using either C-to-N or N-to-C peptide extension strategies.
Collapse
Affiliation(s)
- Karol Molga
- Allchemy, Inc., 45th Street #201, Highland, Indiana 46322, United States
| | - Wiktor Beker
- Allchemy, Inc., 45th Street #201, Highland, Indiana 46322, United States
| | - Rafał Roszak
- Allchemy, Inc., 45th Street #201, Highland, Indiana 46322, United States
| | - Andrzej Czerwiński
- Allchemy, Inc., 45th Street #201, Highland, Indiana 46322, United States
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw 01-224, Poland
- IBS Center for Algorithmic and Robotized Synthesis (CARS), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea
- Department of Chemistry, UNIST, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798,South Korea
| |
Collapse
|
2
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
3
|
Jing R, Powell WC, Fisch KJ, Walczak MA. Desulfurative Borylation of Small Molecules, Peptides, and Proteins. J Am Chem Soc 2023; 145:22354-22360. [PMID: 37812507 PMCID: PMC10594600 DOI: 10.1021/jacs.3c09081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We introduce a direct conversion of alkyl thiols into boronic acids, facilitated by a water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), in conjunction with tetrahydroxydiboron (B2(OH)4), acting as both a radical initiator and a boron source. This desulfurative borylation reaction has been successfully applied to various substrates, including cysteine residues in oligopeptides and small proteins, primary alkyl thiols found in pharmaceutical compounds, disulfides, and selenocysteine. Optimization of reaction conditions was undertaken to reduce the formation of unwanted reactions, such as the reduction of alanyl or other primary radicals, and to prevent deleterious reactions between the phosphine and N-terminal amine that lead to methylene adducts by utilizing a buffer containing glycine-glycine (GG) dipeptide. The developed method is characterized by its operational simplicity and robustness. Moreover, its compatibility with various functional groups present in peptides and proteins makes it a promising tool for late-stage functionalization, extending its potential application across a broad spectrum of chemical and biological targets.
Collapse
Affiliation(s)
- Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Kyle J Fisch
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Gugkaeva ZT, Mardiyan ZZ, Smol'yakov AF, Poghosyan AS, Saghyan AS, Maleev VI, Larionov VA. Sequential Heck Cross-Coupling and Hydrothiolation Reactions Taking Place in the Ligand Sphere of a Chiral Dehydroalanine Ni(II) Complex: Asymmetric Route to β-Aryl Substituted Cysteines. Org Lett 2022; 24:6230-6235. [PMID: 35950978 DOI: 10.1021/acs.orglett.2c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practically useful protocol for the asymmetric synthesis of artificial β-aryl-substituted cysteine derivatives was developed through sequential Pd(II)-catalyzed Heck cross-coupling with aryl iodides and hydrothiolation reaction with various alkyl thiols in the presence of triethylamine taking place in the ligand sphere of a robust and bench-stable chiral dehydroalanine Ni(II) complex. The subsequent acidic decomposition of the single diastereomeric Ni(II) complexes led to the target enantiopure cysteine derivatives.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Zorayr Z Mardiyan
- SPC "Armbiotechnology" SNPO NAS RA, Gyurjyan Str. 14, 0056 Yerevan, Armenia
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.,Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | | | - Ashot S Saghyan
- SPC "Armbiotechnology" SNPO NAS RA, Gyurjyan Str. 14, 0056 Yerevan, Armenia
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
5
|
Guan I, Williams K, Liu JST, Liu X. Synthetic Thiol and Selenol Derived Amino Acids for Expanding the Scope of Chemical Protein Synthesis. Front Chem 2022; 9:826764. [PMID: 35237567 PMCID: PMC8883728 DOI: 10.3389/fchem.2021.826764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cells employ post-translational modifications (PTMs) as key mechanisms to expand proteome diversity beyond the inherent limitations of a concise genome. The ability to incorporate post-translationally modified amino acids into protein targets via chemical ligation of peptide fragments has enabled the access to homogeneous proteins bearing discrete PTM patterns and empowered functional elucidation of individual modification sites. Native chemical ligation (NCL) represents a powerful and robust means for convergent assembly of two homogeneous, unprotected peptides bearing an N-terminal cysteine residue and a C-terminal thioester, respectively. The subsequent discovery that protein cysteine residues can be chemoselectively desulfurized to alanine has ignited tremendous interest in preparing unnatural thiol-derived variants of proteogenic amino acids for chemical protein synthesis following the ligation-desulfurization logic. Recently, the 21st amino acid selenocysteine, together with other selenyl derivatives of amino acids, have been shown to facilitate ultrafast ligation with peptidyl selenoesters, while the advancement in deselenization chemistry has provided reliable bio-orthogonality to PTMs and other amino acids. The combination of these ligation techniques and desulfurization/deselenization chemistries has led to streamlined synthesis of multiple structurally-complex, post-translationally modified proteins. In this review, we aim to summarize the latest chemical synthesis of thiolated and selenylated amino-acid building blocks and exemplify their important roles in conquering challenging protein targets with distinct PTM patterns.
Collapse
Affiliation(s)
- Ivy Guan
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Kayla Williams
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Shu Ting Liu
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Xuyu Liu,
| |
Collapse
|
6
|
Kambanis L, Chisholm TS, Kulkarni SS, Payne RJ. Rapid one-pot iterative diselenide-selenoester ligation using a novel coumarin-based photolabile protecting group. Chem Sci 2021; 12:10014-10021. [PMID: 34349969 PMCID: PMC8317654 DOI: 10.1039/d1sc02781f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
The development of an iterative one-pot peptide ligation strategy is described that capitalises on the rapid and efficient nature of the diselenide–selenoester ligation reaction, together with photodeselenisation chemistry. This ligation strategy hinged on the development of a novel photolabile protecting group for the side chain of selenocysteine, namely the 7-diethylamino-3-methyl coumarin (DEAMC) moiety. Deprotection of this DEAMC group can be effected in a mild, reagent-free manner using visible light (λ = 450 nm) without deleterious deselenisation of selenocysteine residues, thus enabling a subsequent ligation reaction without purification. The use of this DEAMC-protected selenocysteine in iterative DSL chemistry is highlighted through the efficient one-pot syntheses of 60- and 80-residue fragments of mucin-1 as well as apolipoprotein CIII in just 2–4 hours. A method for the rapid one-pot iterative assembly of proteins via diselenide–selenoester ligation (DSL) chemistry is described that capitalises on a novel coumarin-based photolabile protecting group for selenocysteine.![]()
Collapse
Affiliation(s)
- Lucas Kambanis
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Timothy S Chisholm
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
7
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Mampuys P, McElroy CR, Clark JH, Orru RVA, Maes BUW. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900864] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- P. Mampuys
- Organic Synthesis, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - C. R. McElroy
- Green Chemistry Centre of ExcellenceUniversity of York, Heslington York YO10 5DD U.K
| | - J. H. Clark
- Green Chemistry Centre of ExcellenceUniversity of York, Heslington York YO10 5DD U.K
| | - R. V. A. Orru
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)VU University Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - B. U. W. Maes
- Organic Synthesis, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
9
|
Wang X, Corcilius L, Premdjee B, Payne RJ. Synthesis and Utility of β-Selenophenylalanine and β-Selenoleucine in Diselenide–Selenoester Ligation. J Org Chem 2019; 85:1567-1578. [DOI: 10.1021/acs.joc.9b02665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoyi Wang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bhavesh Premdjee
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Hudson RHE, Heidari A, Martin-Chan T, Park G, Wisner JA. On the Necessity of Nucleobase Protection for 2-Thiouracil for Fmoc-Based Pseudo-Complementary Peptide Nucleic Acid Oligomer Synthesis. J Org Chem 2019; 84:13252-13261. [PMID: 31547656 DOI: 10.1021/acs.joc.9b00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A selection of benzyl-based protecting groups for thiouracil (SU) for the synthesis of pseudo-complementary peptide nucleic acid (PNA) has been evaluated. The 4-methoxybenzyl-protecting group that has found use for SU during Boc-based oligomerization is also suitable for Fmoc-based oligomerization. Furthermore, it is demonstrated that SU protection is unnecessary for the successful synthesis of thiouracil-containing PNA. The new 2-thiothymine (ST) PNA monomer has also been prepared and incorporated into an oligomer and its binding to complementary PNA evaluated.
Collapse
Affiliation(s)
- Robert H E Hudson
- Department of Chemistry , The University of Western Ontario , London N6A 5B7 , Ontario , Canada
| | - Ali Heidari
- Department of Chemistry , The University of Western Ontario , London N6A 5B7 , Ontario , Canada
| | - Timothy Martin-Chan
- Department of Chemistry , The University of Western Ontario , London N6A 5B7 , Ontario , Canada
| | - Gyeongsu Park
- Department of Chemistry , The University of Western Ontario , London N6A 5B7 , Ontario , Canada
| | - James A Wisner
- Department of Chemistry , The University of Western Ontario , London N6A 5B7 , Ontario , Canada
| |
Collapse
|
12
|
Wang S, Thopate YA, Zhou Q, Wang P. Chemical Protein Synthesis by Native Chemical Ligation and Variations Thereof. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Yogesh Abaso Thopate
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| |
Collapse
|
13
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
14
|
Yin H, Lu D, Wang S, Wang P. Development of Powerful Auxiliary-Mediated Ligation To Facilitate Rapid Protein Assembly. Org Lett 2019; 21:5138-5142. [PMID: 31247759 DOI: 10.1021/acs.orglett.9b01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we describe an Se-auxiliary mediated ligation protocol capable of rapid native chemical ligations at sterically hindered junctions, followed by in situ auxiliary cleavage under neutral conditions without affecting unprotected Cys residues. This auxiliary, which is prepared from phenyl acetaldehyde in one step, can be conveniently attached to the N-terminal region of a peptide via a reductive amination or coupling reaction. We demonstrated this methodology by synthesizing two protein samples.
Collapse
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
15
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
16
|
Liu Y, Yuan X, Su K, Tian Y, Chen B. Base-Promoted Oxidative C(sp3
)-S Bond Cross-Coupling of Inactive Fluorenes and Thiols for the Synthesis of 9-Monothiolated Fluorenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry; Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University, Lanzhou, Gansu; China
| | - Xinglong Yuan
- State Key Laboratory of Applied Organic Chemistry; Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University, Lanzhou, Gansu; China
| | - Kexin Su
- State Key Laboratory of Applied Organic Chemistry; Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University, Lanzhou, Gansu; China
| | - Yuan Tian
- State Key Laboratory of Applied Organic Chemistry; Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University, Lanzhou, Gansu; China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry; Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University, Lanzhou, Gansu; China
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Zhongwei High-Tech Institute of Lanzhou University, Zhongwei, Ningxia; 755500 China
| |
Collapse
|
17
|
Jin K, Li X. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis. Chemistry 2018; 24:17397-17404. [DOI: 10.1002/chem.201802067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Kang Jin
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| | - Xuechen Li
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| |
Collapse
|
18
|
Chisholm TS, Clayton D, Dowman LJ, Sayers J, Payne RJ. Native Chemical Ligation-Photodesulfurization in Flow. J Am Chem Soc 2018; 140:9020-9024. [PMID: 29792427 DOI: 10.1021/jacs.8b03115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Native chemical ligation (NCL) combined with desulfurization chemistry has revolutionized the way in which large polypeptides and proteins are accessed by chemical synthesis. Herein, we outline the use of flow chemistry for the ligation-based assembly of polypeptides. We also describe the development of a novel photodesulfurization transformation that, when coupled with flow NCL, enables efficient access to native polypeptides on time scales up to 2 orders of magnitude faster than current batch NCL-desulfurization methods. The power of the new ligation-photodesulfurization flow platform is showcased through the rapid synthesis of the 36 residue clinically approved HIV entry inhibitor enfuvirtide and the peptide diagnostic agent somatorelin.
Collapse
Affiliation(s)
- Timothy S Chisholm
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Daniel Clayton
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Luke J Dowman
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Jessica Sayers
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
19
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
20
|
Min D, Yuan X, Liu T, Liu J, Tang S. Fe-catalyzed dithiane radical induced C−S bond activation−addition to α, β-unsaturated ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deng Min
- School of Pharmacy; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Xinyu Yuan
- School of Pharmacy; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Teng Liu
- School of Pharmacy; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Jian Liu
- School of Pharmacy; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Shouchu Tang
- School of Pharmacy; Lanzhou University; Lanzhou 730000 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| |
Collapse
|
21
|
Abstract
The facile rearrangement of "S-acyl isopeptides" to native peptide bonds via S,N-acyl shift is central to the success of native chemical ligation, the widely used approach for protein total synthesis. Proximity-driven amide bond formation via acyl transfer reactions in other contexts has proven generally less effective. Here, we show that under neutral aqueous conditions, "O-acyl isopeptides" derived from hydroxy-asparagine [aspartic acid-β-hydroxamic acid; Asp(β-HA)] rearrange to form native peptide bonds via an O,N-acyl shift. This process constitutes a rare example of an O,N-acyl shift that proceeds rapidly across a medium-size ring (t1/2 ∼ 15 min), and takes place in water with minimal interference from hydrolysis. In contrast to serine/threonine or tyrosine, which form O-acyl isopeptides only by the use of highly activated acyl donors and appropriate protecting groups in organic solvent, Asp(β-HA) is sufficiently reactive to form O-acyl isopeptides by treatment with an unprotected peptide-αthioester, at low mM concentration, in water. These findings were applied to an acyl transfer-based chemical ligation strategy, in which an unprotected N-terminal Asp(β-HA)-peptide and peptide-αthioester react under aqueous conditions to give a ligation product ultimately linked by a native peptide bond.
Collapse
|
22
|
Loibl SF, Dallmann A, Hennig K, Juds C, Seitz O. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation. Chemistry 2018; 24:3623-3633. [PMID: 29334413 DOI: 10.1002/chem.201705927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/26/2022]
Abstract
Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions. With the aim to improve upon both ligation and cleavage, we systematically investigated alternative ligation scaffolds that challenge the N-benzyl dogma. The study revealed that auxiliary-mediated peptide couplings are fastest when the ligation proceeds via 5-membered rather than 6-membered rings. Substituents in α-position of the amine shall be avoided. We observed, perhaps surprisingly, that additional β-substituents accelerated the ligation conferred by the β-mercaptoethyl scaffold. We also describe a potentially general means to remove ligation auxiliaries by treatment with an aqueous solution of triscarboxyethylphosphine (TCEP) and morpholine at pH 8.5. NMR analysis of a 13 C-labeled auxiliary showed that cleavage most likely proceeds through a radical-triggered oxidative fragmentation. High ligation rates provided by β-substituted 2-mercaptoethyl scaffolds, their facile introduction as well as the mildness of the cleavage reaction are attractive features for protein synthesis beyond cysteine and glycine ligation sites.
Collapse
Affiliation(s)
- Simon F Loibl
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Andre Dallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kathleen Hennig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Carmen Juds
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
23
|
Mitchell NJ, Sayers J, Kulkarni SS, Clayton D, Goldys AM, Ripoll-Rozada J, Barbosa Pereira PJ, Chan B, Radom L, Payne RJ. Accelerated Protein Synthesis via One-Pot Ligation-Deselenization Chemistry. Chem 2017. [DOI: 10.1016/j.chempr.2017.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Mitchell NJ, Kulkarni SS, Malins LR, Wang S, Payne RJ. One-Pot Ligation-Oxidative Deselenization at Selenocysteine and Selenocystine. Chemistry 2016; 23:946-952. [DOI: 10.1002/chem.201604709] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 01/27/2023]
Affiliation(s)
| | - Sameer S. Kulkarni
- School of Chemistry; The University of Sydney; Sydney, NSW 2006 Australia
| | - Lara R. Malins
- School of Chemistry; The University of Sydney; Sydney, NSW 2006 Australia
| | - Siyao Wang
- School of Chemistry; The University of Sydney; Sydney, NSW 2006 Australia
| | - Richard J. Payne
- School of Chemistry; The University of Sydney; Sydney, NSW 2006 Australia
| |
Collapse
|
25
|
Zheng Y, Qing FL, Huang Y, Xu XH. Tunable and Practical Synthesis of Thiosulfonates and Disulfides from Sulfonyl Chlorides in the Presence of Tetrabutylammonium Iodide. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600633] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Zheng
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Feng-Ling Qing
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Yangen Huang
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
26
|
Pasunooti KK, Yang R, Banerjee B, Yap T, Liu CF. 5-Methylisoxazole-3-carboxamide-Directed Palladium-Catalyzed γ-C(sp3)–H Acetoxylation and Application to the Synthesis of γ-Mercapto Amino Acids for Native Chemical Ligation. Org Lett 2016; 18:2696-9. [DOI: 10.1021/acs.orglett.6b01160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Renliang Yang
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Biplab Banerjee
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Terence Yap
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chuan-Fa Liu
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
27
|
Huang Y, Chen C, Gao S, Wang Y, Xiao H, Wang F, Tian C, Li Y. Synthesis of
l
‐ and
d
‐Ubiquitin by One‐Pot Ligation and Metal‐Free Desulfurization. Chemistry 2016; 22:7623-8. [DOI: 10.1002/chem.201600101] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi‐Chao Huang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chen‐Chen Chen
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Shuai Gao
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Ye‐Hai Wang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Hua Xiao
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Feng Wang
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chang‐Lin Tian
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Yi‐Ming Li
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
28
|
Jbara M, Maity SK, Seenaiah M, Brik A. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins. J Am Chem Soc 2016; 138:5069-75. [DOI: 10.1021/jacs.5b13580] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Mallikanti Seenaiah
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
29
|
Gui Y, Qiu L, Li Y, Li H, Dong S. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation. J Am Chem Soc 2016; 138:4890-9. [DOI: 10.1021/jacs.6b01202] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yue Gui
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lingqi Qiu
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yaohao Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongxing Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Suwei Dong
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
30
|
Bajaj K, Sakhuja R, Pillai GG. Traceless reductive ligation at a tryptophan site: a facile access to β-hydroxytryptophan appended peptides. Org Biomol Chem 2016; 14:9578-9587. [DOI: 10.1039/c6ob01542e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot methodology (reduction & O to N migration); synthesis of β-hydroxytryptophan appended native peptides; computational support for the mechanism.
Collapse
Affiliation(s)
- Kiran Bajaj
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani 333031
- India
| | - Rajeev Sakhuja
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani 333031
- India
| | | |
Collapse
|