1
|
Puri K, Kulkarni SS. Total synthesis of a structurally complex zwitterionic hexasaccharide repeating unit of polysaccharide B from Bacteroides fragilis via one-pot glycosylation. Commun Chem 2024; 7:204. [PMID: 39285253 PMCID: PMC11405768 DOI: 10.1038/s42004-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Zwitterionic polysaccharides (ZPSs) present on the surface of a common gut commensal Bacteroides fragilis are endowed with unique immunological properties as they can directly bind to T-cells in the absence of protein conjugation. ZPSs are therefore considered to be potential antigens for the development of totally carbohydrate-based vaccines. Herein, we disclose the first total synthesis of a highly branched phosphorylated zwitterionic capsular polysaccharide repeating unit of Bacteroides fragilis. The hexasaccharide repeating unit bearing six different monosaccharides comprises three 1,2-cis-glycosidic linkages, a challenging 1,2-trans linkage in D-QuipNAc-β-(1→4)-D-Gal motif, and a 2-aminoethyl phosphonate appendage. The synthesis of target ZPS was accomplished utilizing an expeditious, highly stereoselective and convergent (1 + 2 + 2 + 1) one-pot glycosylation strategy. The striking features include efficient synthesis of rare deoxy amino sugars D- and L-quinovosamine, stereoselective installation of three 1,2-cis glycosidic linkages, glycosylation of D-quinovosamine donor with a sterically crowded, poorly reactive 4-OH galactose moiety, as well as late stage phosphorylation.
Collapse
Affiliation(s)
- Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
2
|
Kolb B, Silva dos Santos D, Krause S, Zens A, Laschat S. Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2 E,4 E)-dienones. Beilstein J Org Chem 2023; 19:176-185. [PMID: 36814450 PMCID: PMC9940601 DOI: 10.3762/bjoc.19.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Dienones are challenging building blocks in natural product synthesis due to their high reactivity and complex synthesis. Based on previous work and own initial results, a new stereospecific sequential hydrozirconation/Pd-catalyzed acylation of enynes with acyl chlorides towards conjugated (2E,4E)-dienones is reported. We investigated a number of substrates with different alkyl and aryl substituents in the one-pot reaction and showed that regardless of the substitution pattern, the reactions lead to the stereoselective formation (≥95% (2E,4E)) of the respective dienones under mild conditions. It was found that enynes with alkyl chains gave higher yields than the corresponding aryl-substituted analogues, whereas the variation of the acyl chlorides did not affect the reaction significantly. The synthetic application is demonstrated by formation of non-natural and natural dienone-containing terpenes such as β-ionone which was available in 4 steps and 6% overall yield.
Collapse
Affiliation(s)
- Benedikt Kolb
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniela Silva dos Santos
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sanja Krause
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Sinast M, Claasen B, Stöckl Y, Greulich A, Zens A, Baro A, Laschat S. Synthesis of Highly Functionalized Hydrindanes via Sequential Organocatalytic Michael/Mukaiyama Aldol Addition and Telescoped Hydrozirconation/Cross-Coupling as Key Steps: En Route to the AB System of Clifednamides. J Org Chem 2021; 86:7537-7551. [PMID: 34014095 DOI: 10.1021/acs.joc.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AB ring systems of the clifednamide family, polycyclic tetramate macrolactames (PoTeMs), were prepared by a new, convergent approach employing an intramolecular Diels-Alder (IMDA) reaction. Key steps comprise an organocatalytic Michael addition (>90% enantiomeric excess (ee)), a Mukaiyama aldol reaction for the convergent installation of a diene moiety, and a telescoped hydrozirconation/cross-coupling grafting an enone. The following IMDA furnished a highly functionalized hydrindane (diastereomeric ratio (dr) = 91:1) with the same configuration as the clifednamide scaffold. Advantages of this route are only one required protecting group, 13% overall yield over 9 steps (reduced from previously 17 steps/1.3% overall), and the potential access to the key intermediates in the clifednamide biosynthesis.
Collapse
Affiliation(s)
- Moritz Sinast
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Greulich
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Chen GS, Yan XX, Chen SJ, Mao XY, Li ZD, Liu YL. Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. J Org Chem 2020; 85:6252-6260. [PMID: 32298579 DOI: 10.1021/acs.joc.0c00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A one-pot synthesis of 1,3-diyne-tethered trifluoromethylcyclopropanes starting from 2-CF3-3,5-diyne-1-enes and sulfur ylides via a sulfur ylide mediated cyclopropanation and a DBU-mediated epimerization sequence is described in this work. This process is highly diastereoselective with broad substrate scope. Moreover, a series of synthetic transformations based on the diyne moieties were conducted smoothly, affording cyclopropanes featuring trifluoromethyl-substituted all-carbon quaternary centers.
Collapse
Affiliation(s)
- Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Xiao-Xue Yan
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P.R. China
| | - Xiang-Yu Mao
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
6
|
Knutson PC, Fredericks HE, Ferreira EM. Synthesis of 1,3-Diynes via Cadiot-Chodkiewicz Coupling of Volatile, in Situ Generated Bromoalkynes. Org Lett 2018; 20:6845-6849. [PMID: 30336061 PMCID: PMC6217962 DOI: 10.1021/acs.orglett.8b02975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient Cadiot-Chodkiewicz protocol that facilitates the use of low molecular weight alkyne coupling partners is described. The method entails an in situ elimination from a dibromoolefin precursor and immediate subjection to copper-catalyzed conditions, circumventing the hazards of volatile brominated alkynes. The scope of this method is described, and the internal 1,3-diyne products are preliminarily evaluated in ruthenium-catalyzed azide-alkyne cycloadditions.
Collapse
Affiliation(s)
- Phil C. Knutson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602,
United States
| | | | - Eric M. Ferreira
- Department of Chemistry, University of Georgia, Athens, Georgia 30602,
United States
| |
Collapse
|
7
|
Takahashi K, Ogiwara Y, Sakai N. Palladium-Catalyzed Reductive Coupling Reaction of Terminal Alkynes with Aryl Iodides Utilizing Hafnocene Difluoride as a Hafnium Hydride Precursor Leading to trans-Alkenes. Chem Asian J 2018; 13:809-814. [PMID: 29377507 DOI: 10.1002/asia.201701775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Herein, we describe a reductive cross-coupling of alkynes and aryl iodides by using a novel catalytic system composed of a catalytic amount of palladium dichloride and a promoter precursor, hafnocene difluoride (Cp2 HfF2 , Cp=cyclopentadienyl anion), in the presence of a mild reducing reagent, a hydrosilane, leading to a one-pot preparation of trans-alkenes. In this process, a series of coupling reactions efficiently proceeds through the following three steps: (i) an initial formation of hafnocene hydride from hafnocene difluoride and the hydrosilane, (ii) a subsequent hydrohafnation toward alkynes, and (iii) a final transmetalation of the alkenyl hafnium species to a palladium complex. This reductive coupling could be chemoselectively applied to the preparation of trans-alkenes with various functional groups, such as an alkyl group, a halogen, an ester, a nitro group, a heterocycle, a boronic ester, and an internal alkyne.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba, 278-8510, Japan
| |
Collapse
|
8
|
Johnson TC, Siegel D. Directing Stem Cell Fate: The Synthetic Natural Product Connection. Chem Rev 2017; 117:12052-12086. [PMID: 28771328 DOI: 10.1021/acs.chemrev.7b00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells possess remarkable potential for the treatment of a broad array of diseases including many that lack therapeutic options. However, the use of cell-based products derived from stem cells as therapeutics has limitations including rejection, sufficient availability, and lack of appropriate engraftment. Chemical control of stem cells provides potential solutions for overcoming many of the current limitations in cell-based therapeutics. The development of exogenous molecules to control stem cell self-renewal or differentiation has arrived at natural product-based agents as an important class of modulators. The ex vivo production of cryopreserved cellular products for use in tissue repair is a relatively new area of medicine in which the conventional hurdles to implementing chemicals to effect human health are changed. Translational challenges centered on chemistry, such as pharmacokinetics, are reduced. Importantly, in many cases the desired human tissues can be evaluated against new chemicals, and approaches to cellular regulation can be validated in the clinically applicable system. As a result linking new and existing laboratory syntheses of natural products with findings of the compounds' unique abilities to regulate stem cell fate provides opportunities for developing improved methods for tissue manufacture, accessing probe compounds, and generating new leads that yield manufactured cells with improved properties. This review provides a summary of natural products that have shown promise in controlling stem cell fate and which have also been fully synthesized thereby providing chemistry platforms for further development.
Collapse
Affiliation(s)
- Trevor C Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
9
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
10
|
Ma KQ, Miao YH, Gao XX, Chao JB, Zhang X, Qin XM. Total syntheses of bupleurynol and its analog. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
Ma KQ, Miao YH, Li X, Zhou YZ, Gao XX, Zhang X, Chao JB, Qin XM. Discovery of 1,3-diyne compounds as novel and potent antidepressant agents: synthesis, cell-based assay and behavioral studies. RSC Adv 2017. [DOI: 10.1039/c7ra01268c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1,3-Diynes compound 7a protected the corticosterone-injured PC12 cells through regulation of the apoptosis related proteins and exerted antidepressant effect in mice forced swim test in a concentration-dependent manner.
Collapse
Affiliation(s)
- Kai-Qing Ma
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yan-Hong Miao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiang Zhang
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | - Jian-Bin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|