1
|
Ohta H, Asahara R, Ikeda R, Sakamoto T, Hayashi M. A Protocol for the Synthesis of Organophosphorus(V) Compounds with P-N and P-O Bonds by Umpolung Strategy Using Hydroxymethylphosphine Sulfides. J Org Chem 2025; 90:824-829. [PMID: 39701961 DOI: 10.1021/acs.joc.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Versatile P-N and P-O bond-forming reactions by an umpolung approach using air- and moisture-stable hydroxymethylphosphine sulfides were developed. Phosphine sulfides containing multiple hydroxymethyl groups could undergo sequential transformations combining P-N and P-O as well as P-C bond formations, providing a novel protocol for the synthesis of a variety of organophosphorus(V) compounds with P-N and P-O bonds.
Collapse
Affiliation(s)
- Hidetoshi Ohta
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Ryosuke Asahara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Ryusei Ikeda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tateyuki Sakamoto
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Minoru Hayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
2
|
Shi DW, Yue HQ, Li M, Liu J, Wang CC, Yang SD, Yang B. Tf 2O-Mediated P(O)-N Bond Formation of Either P(O)-OH or P(O)-H Reagents with Multitype Amines. J Org Chem 2024; 89:6729-6739. [PMID: 38690961 DOI: 10.1021/acs.joc.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We have developed a Tf2O-mediated approach for the direct amination of either P(O)-OH or P(O)-H reagents with a variety of aliphatic or aromatic amines. Without the requirement of precious metals and toxic reagents, this protocol provides an alternative route to various phosphinamides and phosphoramides. The reaction proceeds under simple and mild conditions and can be effectively scaled up with similar efficiency.
Collapse
Affiliation(s)
- Da-Wei Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Hui-Qi Yue
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Chang-Cheng Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
3
|
Cheng F, Li D, Li J, Tang Y, Wu Y, Xu S. Synthesis of Phosphinic Amides from Chlorophosphines and Hydroxyl Amines via P(III) to P(V) Rearrangement. Org Lett 2023; 25:2555-2559. [PMID: 36876752 DOI: 10.1021/acs.orglett.3c00229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Phosphoranyl radicals are essential mediators to bring about new radicals but often produce a stoichiometric amount of phosphine oxide/sulfide waste. Herein, we devised a phosphorus-containing species as a radical precursor, but without the generation of phosphorus waste. Accordingly, a catalyst-free synthesis of phosphinic amides from hydroxyl amines and chlorophosphines via P(III) to P(V) rearrangement is described. Mechanistically, it may involve the initial formation of a R2N-O-PR2 species that undergoes homolysis of N-O bonds and subsequent radical recombination.
Collapse
Affiliation(s)
- Fang Cheng
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongqiu Li
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jing Li
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yong Wu
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Silong Xu
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
4
|
Westerhausen M, Schönherr PRW, Pröhl F, Görls H, Krieck S. Structural Diversity of Lithium N‐Mesityl‐P,P‐diphenylphosphinimidate of the type [(L)Li{O‐PPh2=N‐Mes]n Depending on Lewis Base L. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paul R. W. Schönherr
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena IAAC GERMANY
| | - Felix Pröhl
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena IAAC GERMANY
| | - Helmar Görls
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena IAAC GERMANY
| | - Sven Krieck
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena IAAC GERMANY
| |
Collapse
|
5
|
Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. Copper-Catalyzed Phosphorylation of N, N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. J Org Chem 2022; 87:6224-6236. [PMID: 35442041 DOI: 10.1021/acs.joc.2c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Collapse
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
6
|
Malik AA, Ara T. An efficient, catalyst and solvent free Staudinger phosphite reaction for the synthesis of phosphoramidates under mild conditions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif A. Malik
- Department of Chemistry, National Institute of Technology (NIT), Srinagar, India
| | - Tabassum Ara
- Department of Chemistry, National Institute of Technology (NIT), Srinagar, India
| |
Collapse
|
7
|
Li YB, Tian H, Zhang S, Xiao JZ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of P-Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022; 61:e202117760. [PMID: 35076164 DOI: 10.1002/anie.202117760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/04/2023]
Abstract
Herein, a copper(I)-catalyzed reaction of diarylphosphines and O-benzoyl hydroxylamines is developed. In the cases of symmetrical diarylphosphines, a series of aminophosphinites is prepared in high yields. In the cases of unsymmetrical diarylphosphines, an array of P-chiral aminophosphinites is synthesized in high yields with high enantioselectivity by using a copper(I)-(R,RP )-Ph-FOXAP complex as a chiral catalyst. Based on several control experiments and 31 P NMR studies, a two-electron redox mechanism involving the dynamic kinetic asymmetric transformation of unsymmetrical diarylphosphines is proposed for the copper(I)-catalyzed asymmetric reaction. Finally, one representative P-chiral phosphoric amide generated through the oxidation with H2 O2 is transformed to a chiral diarylphosphinate in high yield with retained enantioselectivity, which allows further transformations towards various P-chiral tertiary phosphines.
Collapse
Affiliation(s)
- Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
8
|
Li Y, Tian H, Zhang S, Xiao J, Yin L. Copper(I)‐Catalyzed Asymmetric Synthesis of
P
‐Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan‐Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jun‐Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
9
|
Peng X, Bai R, Liu S, Li Z, Jiao L. Substitution of diarylphosphoryl azides with aliphatic amines catalyzed by simple rare‐earth metal salts: Efficient and novel preparation of phosphoryl amides. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin‐Hua Peng
- School of Chemical Engineering Northwest University Xi'an China
| | - Rui Bai
- School of Chemical Engineering Northwest University Xi'an China
| | - Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an China
| | - Zhuo Li
- School of Chemical Engineering Northwest University Xi'an China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi'an China
| | - Lin‐Yu Jiao
- School of Chemical Engineering Northwest University Xi'an China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi'an China
| |
Collapse
|
10
|
Fu Z, Lei Y, Sun F, Xu J. Electrophilic hydrophosphonylation of aldimines with alkylphos-phonochloridates access to (E)-alk-1-enylphosphonamidates. Org Chem Front 2022. [DOI: 10.1039/d1qo01949j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various α,β-unsaturated (E)-alkenylphosphonamidates were prepared in excellent stereo- and regioselectivties via the electrophilic hydrophosphonylation of cyclic and acyclic imines with alkylphosphonochloridates in the presence of base. For unsaturated imines, only...
Collapse
|
11
|
Zhu YY, Niu Y, Niu YN, Yang SD. Recent advances in the synthesis and applications of phosphoramides. Org Biomol Chem 2021; 19:10296-10313. [PMID: 34812834 DOI: 10.1039/d1ob01566d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphoramide, as an important framework of many biologically active molecules, has attracted widespread attention in recent decades. It is not only widely used in pharmaceuticals because of its excellent biological activities, but it also shows good performance in organic dyes, flame retardants and extractors. Thus, it is of great significance to develop effective and convenient methods for the synthesis of phosphoramides. In this review, the recent advancements made in the synthesis routes and applications of phosphoramides are discussed. The synthetic strategies of phosphoramides can be separated into five categories: phosphorus halides as the substrate, phosphates as the substrate, phosphorus hydrogen as the substrate, azides as the substrate and other methods. The latest examples of these methods are provided and some representative mechanisms are also described.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian 223003, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Liu K, Chang X, He Y, Su Z, Huang Y, Huang C, Lei J, Zhu Q. Tunable synthesis of chalcophosphinic amides and tertiary phosphinates using tert-butyl N, N-dialkylperoxyamidate. Org Chem Front 2021. [DOI: 10.1039/d1qo00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tunable amidation and esterification of phosphine chalcoxide have been developed, in which tert-butyl N,N-dialkylperoxyamidate plays a dual role as a secondary amine and a tertiary alcohol precursor.
Collapse
Affiliation(s)
- Kun Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Xuexue Chang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhongfu Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Chusheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Jian Lei
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P.R. China
| | - Qiang Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
13
|
Jiao LY, Peng XH, Wang ZL, Jia N, Li Z. When phosphoryl azide meets mechanochemistry: clean, rapid, and efficient synthesis of phosphoryl amides under B(C6F5)3 catalysis in a ball mill. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01314a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We described herein the first example associated with B(C6F5)3-catalyzed preparation of phosphoryl amides under mechanochemical conditions.
Collapse
Affiliation(s)
- Lin-Yu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an, Shaanxi, 710069, P. R. China
| | - Xin-Hua Peng
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Ze-Lin Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Nan Jia
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an, Shaanxi, 710069, P. R. China
| |
Collapse
|
14
|
Wu Y, Chen K, Ge X, Ma P, Xu Z, Lu H, Li G. Redox-Neutral P(O)-N Coupling between P(O)-H Compounds and Azides via Dual Copper and Photoredox Catalysis. Org Lett 2020; 22:6143-6149. [PMID: 32649207 DOI: 10.1021/acs.orglett.0c02207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a redox-neutral P(O)-N coupling reaction of P(O)-H compounds with azides via photoredox and copper catalysis, providing new access to useful phosphinamides, phosphonamides, and phosphoramides. This transformation tolerates a wide range of nucleophilic functionalities including alcohol and amine nucleophiles, which makes up for the deficiency of classical nitrogen nucleophilic substitution reactions. As a demonstration of the broad potential applications of this new methodology, late-stage functionalization of a diverse array of azido-bearing natural products and drug molecules, a preliminary asymmetric reaction, and a continuous visible-light photoflow process have been developed.
Collapse
Affiliation(s)
- Yanan Wu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ken Chen
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xia Ge
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Panpan Ma
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhiyuan Xu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
15
|
Dong X, Wang R, Jin W, Liu C. Electrochemical Oxidative Dehydrogenative Phosphorylation of N-Heterocycles with P(O)-H Compounds in Imidazolium-Based Ionic Liquid. Org Lett 2020; 22:3062-3066. [PMID: 32255646 DOI: 10.1021/acs.orglett.0c00814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a direct and green electrochemical oxidative cross-dehydrogenative coupling reaction of N-heterocycles with hydrogen phosphoryl compounds under external oxidant-free conditions. Various phosphorylation products of substituted carbazoles and indoles are assembled in modest to excellent yields. A hydrogen release process is preliminarily demonstrated and H2 is the sole byproduct. An imidazolium based ionic liquid is selected as the optimal electrolyte.
Collapse
Affiliation(s)
- Xiaojuan Dong
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Ruige Wang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Weiwei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| |
Collapse
|
16
|
Chen L, Liu X, Zou Y. Recent Advances in the Construction of Phosphorus‐Substituted Heterocycles, 2009–2019. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901540] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| | - Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| |
Collapse
|
17
|
Tan C, Liu X, Jia H, Zhao X, Chen J, Wang Z, Tan J. Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)-H Compounds. Chemistry 2019; 26:881-887. [PMID: 31625634 DOI: 10.1002/chem.201904237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Herein, we report a highly efficient ZnI2 -triggered oxidative cross-coupling reaction of P(O)-H compounds and amines. This operationally simple protocol provides unprecedented generic access to phosphinic amides/phosphoramidate derivatives in good yields and short reaction time. Besides, the reaction proceeds under mild conditions, which avoids the use of hazardous reagents, and is applicable to scale-up syntheses as well as late-stage functionalization of drug molecules. The stereospecific coupling is also achieved from readily available optically enriched P(O)-H compounds.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyuan Liu
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huanxin Jia
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaowen Zhao
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Chen
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry &, Center for Excellence in Molecular Synthesis of, the Chinese Academy of Sciences, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Wang X, Ou Y, Peng Z, Yu G, Huang Y, Li X, Huo Y, Chen Q. TBHP/NH 4I-Mediated Direct N-H Phosphorylation of Imines and Imidates. J Org Chem 2019; 84:14949-14956. [PMID: 31622097 DOI: 10.1021/acs.joc.9b02301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct and practical metal-free N-H phosphorylation has been achieved via the TBHP/NH4I-mediated cross-dehydrogenative coupling (CDC) reactions between imines/imidates and P(O)H compounds. This transformation provides an efficient synthetic route to the construction of P-N bonds with good functional group compatibility, leading to the formation of N-phosphorylimines and N-phosphorylimidates in up to 95% yield (33 examples) under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yingcong Ou
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Zhenbo Peng
- Chemical Engineering College , Ningbo Polytechnic , Ningbo 315800 , China
| | - Guodian Yu
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yuanting Huang
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Qian Chen
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
19
|
Li Q, Sun X, Yang X, Wu M, Sun S, Chen X. Transition-metal-free amination phosphoryl azide for the synthesis of phosphoramidates. RSC Adv 2019; 9:16040-16043. [PMID: 35521381 PMCID: PMC9064390 DOI: 10.1039/c9ra03389k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023] Open
Abstract
A facile and efficient approach to phosphoramidates was developed via amination of phosphoryl azides. A variety of phosphoramidates were obtained in one step with good to excellent yields under a mild reaction system. The process uses easily available amines as a N source and offers a new opportunity for P-N bond formation.
Collapse
Affiliation(s)
- Qing Li
- Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China +86-715-8338007
| | | | - Xiaoqin Yang
- Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China +86-715-8338007
| | - Minghu Wu
- Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China +86-715-8338007
| | - Shaofa Sun
- Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China +86-715-8338007
| | - Xiuling Chen
- Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China +86-715-8338007
| |
Collapse
|
20
|
Jankins TC, Qin Z, Engle KM. A practical method for N-alkylation of phosphinic (thio)amides with alcohols via transfer hydrogenation. Tetrahedron 2019; 75:3272-3281. [PMID: 31745374 DOI: 10.1016/j.tet.2019.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This manuscript describes a modular method for preparing N-alkyl phosphinic amides from primary or secondary alcohols and primary phosphinic amide (R1R2P=ONH2) nucleophiles via transfer hydrogenation. The transformation typically proceeds in excellent yields, employs conveniently available reagents, and produces water as the only byproduct.
Collapse
Affiliation(s)
- Tanner C Jankins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ziyang Qin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Zhao M, Xiao Y, Qiao Y. Mechanistic insights and origin of chemoselectivity for S–O bond cleavage in dinitrobenzenesulfonic carbamates. NEW J CHEM 2019. [DOI: 10.1039/c9nj03770e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational study on the NHC-catalyzed chemoselective S–O bond cleavage in dinitrobenzenesulfonic carbamates.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Yang Xiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
22
|
Wu Z, Wang J. N-Heterocyclic Carbene-Catalyzed Chemoselective S-O Bond Cleavage of Benzenesulfonic Carbamate. Org Lett 2018; 20:7607-7610. [PMID: 30489088 DOI: 10.1021/acs.orglett.8b03338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An unprecedented example of NHC-catalyzed chemoselective S-O bond cleavage of dinitrobenzenesulfonic carbamates is described. This protocol features several advantages, including mild reaction conditions, broad substrate scope, and operational simplicity, which allows it to be an attractive synthetic method for hydroxylamine synthesis. Notably, dinitrobenzenesulfonic carbamates not only work as "O" synthons but also serve as an efficient oxidant in this reaction.
Collapse
Affiliation(s)
- Zijun Wu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| |
Collapse
|
23
|
Lan XW, Wang NX, Xing Y. Recent Advances in Radical Difunctionalization of Simple Alkenes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700678] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xing-Wang Lan
- Chinese Academy of Sciences; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; 100190 Beijing China
| | - Nai-Xing Wang
- Chinese Academy of Sciences; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; 100190 Beijing China
| | - Yalan Xing
- Department of Chemistry; William Paterson University of New Jersey; 07470 Wayne New Jersey USA
| |
Collapse
|
24
|
Liu J, Zhao S, Song W, Li R, Guo X, Zhuo K, Yue Y. Silver-Catalyzed Carbon-Phosphorus Functionalization for Polyheterocycle Formation. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jianming Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Shanshan Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Weiwei Song
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Rong Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Xinyu Guo
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Kelei Zhuo
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Yuanyuan Yue
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| |
Collapse
|
25
|
Wang H, Wang G, Lu Q, Chiang CW, Peng P, Zhou J, Lei A. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of β-Keto Sulfides and Sulfones. Chemistry 2016; 22:14489-93. [DOI: 10.1002/chem.201603041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Huamin Wang
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Guangyu Wang
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Qingquan Lu
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Chien-Wei Chiang
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Pan Peng
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Jiufu Zhou
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences; The Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072, Hubei P. R. China
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022, Jiangxi P. R. China
| |
Collapse
|
26
|
Hong G, Zhu X, Hu C, Aruma AN, Wu S, Wang L. Base-Catalyzed Hydrophosphination of Azobenzenes with Diarylphosphine Oxides: A Precise Construction of N-N-P Unit. J Org Chem 2016; 81:6867-74. [DOI: 10.1021/acs.joc.6b01210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gang Hong
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyan Zhu
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chen Hu
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Alfred Njasotapher Aruma
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shengying Wu
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Limin Wang
- Key Laboratory
for Advanced
Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Zheng J, Zhang Y, Wang D, Cui S. Silver(I)-Mediated Phosphorylation/Cyclization Cascade of N-Cyanamide Alkenes for Divergent Access to Quinazolinones and Dihydroisoquinolinones. Org Lett 2016; 18:1768-71. [DOI: 10.1021/acs.orglett.6b00481] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing Zheng
- Institute of Drug Discovery
and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yan Zhang
- Institute of Drug Discovery
and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Dahai Wang
- Institute of Drug Discovery
and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery
and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| |
Collapse
|