1
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Wang HC, Shen WJ, You SL. Regio- and Enantioselective Rhodium-Catalyzed Allylic Arylation of Racemic Allylic Carbonates with Arylboronic Acids. Angew Chem Int Ed Engl 2025; 64:e202421596. [PMID: 39792063 DOI: 10.1002/anie.202421596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95 % yield, >20 : 1 b/l, >99 % ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
3
|
Stojalnikova V, Webster SJ, Liu K, Fletcher SP. Chelation enables selectivity control in enantioconvergent Suzuki-Miyaura cross-couplings on acyclic allylic systems. Nat Chem 2024; 16:791-799. [PMID: 38332329 PMCID: PMC11087250 DOI: 10.1038/s41557-023-01430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
Asymmetric Suzuki-Miyaura cross-couplings with aryl boronic acids and allylic electrophiles are a powerful method to convert racemic mixtures into enantioenriched products. Currently, enantioconvergent allylic arylations are limited to substrates that are symmetrical about the allylic unit, and the absence of strategies to control regio-, E/Z- and enantioselectivity in acyclic allylic systems is a major restriction. Here, using a system capable of either conjugate addition or allylic arylation, we have discovered the structural features and experimental conditions that allow an acyclic system to undergo chemo- and regioselective, enantioconvergent allylic Suzuki-Miyaura-type arylation. A wide variety of boronic acid coupling partners can be used, and both alkyl and aromatic substituents are tolerated on the allylic unit so that a wide variety of structures can be obtained. Preliminary mechanistic studies reveal that the chelating ability of the ester group is crucial to obtaining high regio- and enantioselectivity. Using this method, we were able to synthesize the natural products (S)-curcumene and (S)-4,7-dimethyl-1-tetralone and the clinically used antidepressant sertraline (Zoloft).
Collapse
Affiliation(s)
| | - Stephen J Webster
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Ke Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Stephen P Fletcher
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Peng PK, Donald CP, Dong Z, May JA. Photoactivation of Hydrazones for the Synthesis of Diarylalkanes and Trialkylmethylboronates: The Key Role Played by Soluble Base. Org Lett 2024. [PMID: 38602322 DOI: 10.1021/acs.orglett.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The synthesis of diaryl alkanes and tertiary organoboronates via Barluenga coupling at room temperature occurred via photoactivated conversion of aryl sulfonyl hydrazones to diazo compounds in the presence of soluble bases. The combination of arylsulfonyl hydrazone and a soluble base is necessary to provide a near-UV chromophore. Using aromatic hydrazones and aromatic boronic acids resulted in rapid deboronation because of the instability of dibenzylic boron intermediates. Alkyl hydrazones allowed the isolation of derivatives of the tertiary boronate.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building 112, Houston, Texas 77204-5003, United States
| | - Clayton P Donald
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building 112, Houston, Texas 77204-5003, United States
| | - Zhencheng Dong
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building 112, Houston, Texas 77204-5003, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
5
|
Morack T, Myers TE, Karas LJ, Hardy MA, Mercado BQ, Sigman MS, Miller SJ. An Asymmetric Aromatic Finkelstein Reaction: A Platform for Remote Diarylmethane Desymmetrization. J Am Chem Soc 2023; 145:22322-22328. [PMID: 37788150 PMCID: PMC10591928 DOI: 10.1021/jacs.3c08727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A first-of-its-kind enantioselective aromatic Finkelstein reaction is disclosed for the remote desymmetrization of diarylmethanes. The reaction operates through a copper-catalyzed C-I bond-forming event, and high levels of enantioselectivity are achieved through the deployment of a tailored guanidinylated peptide ligand. Strategic use of transition-metal-mediated reactions enables the chemoselective modification of the aryl iodide products; thus, the synthesis of a diverse set of otherwise difficult-to-access diarylmethanes with excellent levels of selectivity is realized from a common intermediate. A mixed experimental/computational analysis of steric parameters and substrate conformations identifies the importance of remote conformational effects as a key to achieving high enantioselectivity in this desymmetrization reaction.
Collapse
Affiliation(s)
- Tobias Morack
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Tyler E. Myers
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Lucas J. Karas
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Melissa A. Hardy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
6
|
Ren JH, Liu Y, Shen CX, Zheng QW, Meng XW, Li JR, Chen LY, Liu RH. Three novel dalbergiphenol hybrids from the heartwood of Dalbergia cochinchinensis. Fitoterapia 2023; 170:105663. [PMID: 37652268 DOI: 10.1016/j.fitote.2023.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.
Collapse
Affiliation(s)
- Jia-Hui Ren
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Chen-Xiao Shen
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qi-Wan Zheng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiao-Wei Meng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jia-Rong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lan-Ying Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Rong-Hua Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
7
|
Li J, Song X, Wang Y, Huang J, You H, Chen FE. Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions. Chem Sci 2023; 14:4351-4356. [PMID: 37123175 PMCID: PMC10132103 DOI: 10.1039/d3sc00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
The Cu-catalyzed AAA reactions employing challenging racemic inert cyclic allylic ethers with sterically hindered Grignard reagents have been disclosed under batch and flow conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Xiao Song
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Zhong C, Tang H, Cui B, Shi Y, Cao C. Pd-NHC catalyzed Suzuki cross-coupling of benzyl ammonium salts. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
C2-Symmetric N-Heterocyclic Carbenes in Asymmetric Transition-Metal Catalysis. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The last decades have witnessed a rapid growth of applications of N-heterocyclic carbenes (NHCs) in different chemistry fields. Due to their unique steric and electronic properties, NHCs have become a powerful tool in coordination chemistry, allowing the preparation of stable metal-ligand frameworks with both main group metals and transition metals. An overview on the use of five membered monodentate C2-symmetric N-heterocyclic carbenes (NHCs) as ligands for transition-metal complexes and their most relevant applications in asymmetric catalysis is offered.
Collapse
|
10
|
Li J, Song X, Wu F, You H, Chen FE. Cu‐Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Allyl Bromides with Organolithium Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Li
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Xiao Song
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Fusong Wu
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Hengzhi You
- Harbin Institute of Technology Shenzhen School of science Xili University Town, Building G, Room 608 518055 Shenzhen CHINA
| | - Fen-Er Chen
- Harbin Institute of Technology Shenzhen School of science CHINA
| |
Collapse
|
11
|
Foster D, Borhanuddin SM, Dorta R. Designing successful monodentate N-heterocyclic carbene ligands for asymmetric metal catalysis. Dalton Trans 2021; 50:17467-17477. [PMID: 34787620 DOI: 10.1039/d1dt02951g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chiral ligands are of particular importance in asymmetric transition-metal catalysis. Although the development of effective chiral monodentate N-heterocyclic carbenes (NHCs) has been slow, a growing amount of papers have been published in recent years showing their unique efficiency as chiral ancillary ligands. Herein we provide an overview of NHC structures that accomplish high levels of enantioselectivity (≥90% ee) and give guidelines to their use and thoughts on the future of this field.
Collapse
Affiliation(s)
- Daven Foster
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| | - S M Borhanuddin
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| | - Reto Dorta
- Department of Chemistry, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Western Australia, Australia.
| |
Collapse
|
12
|
Casalta C, Gourlaouen C, Bouzbouz S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of α-Fluoro But-1-enoic Acid Amides via β-F-Elimination in Water. Org Lett 2021; 23:8122-8126. [PMID: 34617755 DOI: 10.1021/acs.orglett.1c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allylic arylation of α-fluoro but-1-enoic acid amides with arylboronic acids was carried out in water by comparing the catalytic activity of iridium(III) and rhodium(III). Ir(III) has shown a strong superiority over Rh(III) to give allyl-aryl coupling products with excellent stereoselectivity in favor of the Z-isomer. The origin of high stereoselectivity is perhaps because of the a coordination of iridium Ir-N or Ir-O.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 67070 Strasbourg, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| |
Collapse
|
13
|
Luo N, Zhong Y, Shui H, Luo R. pH-Mediated Selective Synthesis of N-Allylic Alkylation or N-Alkylation Amines with Allylic Alcohols via an Iridium Catalyst in Water. J Org Chem 2021; 86:15509-15521. [PMID: 34644075 DOI: 10.1021/acs.joc.1c01930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amination of allylic alcohols is an effective approach in the facile synthesis of N-allylic alkylation or N-alkylation amines. Recently, a series of catalysts were devised to push forward this transformation. However, current synthetic methods are typically limited to achieve either N-allylic alkylation or N-alkylation products via a certain catalyst. In this article, a pH-mediated selective synthesis of N-allylic alkylation or N-alkylation amines with allylic alcohols via an iridium catalyst with water as the environmental benign solvent is revealed, enabling the miscellaneous synthesis of N-allylic alkylation and N-alkylation products in outstanding yields. Furthermore, a gram-scale experiment with low catalyst loading offers the potential to access a distinct entry for the synthesis of the antifungal drug naftifine.
Collapse
Affiliation(s)
- Nianhua Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi, P. R. China
| | - Yuhong Zhong
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi, P. R. China
| | - Hongling Shui
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi, P. R. China
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
14
|
Yang XW, Li DH, Song AX, Liu FS. "Bulky-Yet-Flexible" α-Diimine Palladium-Catalyzed Reductive Heck Cross-Coupling: Highly Anti-Markovnikov-Selective Hydroarylation of Alkene in Air. J Org Chem 2020; 85:11750-11765. [PMID: 32808522 DOI: 10.1021/acs.joc.0c01509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To pursue a highly regioselective and efficient reductive Heck reaction, a series of moisture- and air-stable α-diimine palladium precatalysts were rationally designed, readily synthesized, and fully characterized. The relationship between the structures of the palladium complexes and the catalytic properties was investigated. It was revealed that the"bulky-yet-flexible"palladium complexes allowed highly anti-Markovnikov-selective hydroarylation of alkenes with (hetero)aryl bromides under aerobic conditions. Further synthetic application of the present protocol could provide rapid and straightforward access to functional and biologically active molecules.
Collapse
Affiliation(s)
- Xu-Wen Yang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
15
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
16
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
17
|
Casalta C, Bouzbouz S. Rhodium(III) Catalyzed Regioselective and Stereospecific Allylic Arylation in Water by β-Fluorine Elimination of the Allylic Fluoride: Toward the Synthesis of Z-Alkenyl-Unsaturated Amides. Org Lett 2020; 22:2359-2364. [PMID: 32159966 DOI: 10.1021/acs.orglett.0c00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A direct coupling of arylboronic acids with allylic fluorides was carried out in water without additives using a rhodium(III) catalyst (Cp*RhCl2)2. The transformation proceeded with excellent γ-selectivity to afford major allyl-aryl coupling products (Z) γ-substituted α,β-unsaturated amides. The reactions of α-chiral allylic fluorides took place with excellent α-to-γ chirality transfer to give allylated arenes with a stereogenic center at the benzylic and allylic position.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| |
Collapse
|
18
|
|
19
|
Ohtaka A, Kawase M, Usami A, Fukui S, Yamashita M, Yamaguchi K, Sakon A, Shiraki T, Ishida T, Nagata S, Kimura Y, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Mechanistic Study on Allylic Arylation in Water with Linear Polystyrene-Stabilized Pd and PdO Nanoparticles. ACS OMEGA 2019; 4:15764-15770. [PMID: 31572880 PMCID: PMC6761747 DOI: 10.1021/acsomega.9b02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The catalytic cycle of allylic arylation in water catalyzed by linear polystyrene-stabilized Pd or PdO nanoparticles (PS-PdNPs or PS-PdONPs) was investigated. Stoichiometric stepwise reactions indicated that the reaction did not proceed stepwise on the surface of the catalyst. In the case of the reaction with PS-PdNPs, the leached Pd species is the catalytically active species and the reaction takes place through a similar reaction pathway accepted in the case of a complex catalyst. In contrast, allylic arylation using PS-PdONPs as a catalyst occurs via a Pd(II) catalytic cycle.
Collapse
Affiliation(s)
- Atsushi Ohtaka
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Misa Kawase
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Usami
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Shiho Fukui
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Mana Yamashita
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Kazuki Yamaguchi
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Sakon
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Tomoya Shiraki
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Taiki Ishida
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Soma Nagata
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Yuji Kimura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Go Hamasaka
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Tsutomu Shinagawa
- Osaka
Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto, Osaka 536-8553, Japan
| | - Osamu Shimomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Ryôki Nomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| |
Collapse
|
20
|
Luo H, Hu G, Li P. Sulfur-Mediated Allylic C-H Arylation, Epoxidation, and Aziridination. J Org Chem 2019; 84:10569-10578. [PMID: 31287687 DOI: 10.1021/acs.joc.9b01438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-free, sulfur-mediated allylic C-H arylation, epoxidation, and aziridination were realized through one-pot procedures. The reaction design involved initial addition between olefins and triflic anhydride activated sulfoxides, followed by subsequent reactions of the allylic sulfur ylides generated under basic conditions with arylboronic acids, aldehydes, or aldimines, to give allylic arylation, epoxidation, or aziridination products, respectively.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Gang Hu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China.,Department of Chemistry , Baotou Teacher's College , Baotou 014030 , China
| | - Pingfan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
21
|
Uhl W, Tolzmann M, Willeke K, Honacker C, Hepp A, Layh M, Würthwein E. Silicon–Halogen Bond Activation in Mixed Si/Al Compounds and an Approach to Intramolecular Stabilized Silylium Ions. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Werner Uhl
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
- Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation (CMTC) Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Michael Tolzmann
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Kira Willeke
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Christian Honacker
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Ernst‐Ulrich Würthwein
- Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation (CMTC) Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
22
|
Fujihara R, Nakata K. Chiral Inductive Diastereoconvergent Allylation Reactions of Allyltrimethylsilane and Diastereomixtures of Diarylmethanols Catalyzed by FeCl3. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rina Fujihara
- Department of Chemistry; Graduate School of Natural Science and Technology; Shimane University; 1060 Nishikawatsu 690-8504 Matsue, Shimane Japan
| | - Kenya Nakata
- Department of Chemistry; Graduate School of Natural Science and Technology; Shimane University; 1060 Nishikawatsu 690-8504 Matsue, Shimane Japan
| |
Collapse
|
23
|
Hurtley AE, Stone EA, Metrano AJ, Miller SJ. Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst. J Org Chem 2018; 82:11326-11336. [PMID: 29020446 DOI: 10.1021/acs.joc.7b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diarylmethylamido bis(phenols) have been subjected to peptide-catalyzed, enantioselective bromination reactions. Desymmetrization of compounds in this class has been achieved such that enantioenriched products may be isolated with up to 97:3 er. Mechanistically, the observed enantioselectivity was shown to be primarily a function of differential functionalization of enantiotopic arenes, although additional studies unveiled a contribution from secondary kinetic resolution of the product (to afford the symmetrical dibromide) under the reaction conditions. Variants of the tetrapeptide catalyst were also evaluated and revealed a striking observation-enantiodivergent catalysis is observed upon changing the achiral amino acid residue in the catalyst (at the i+2 position) from an aminocyclopropane carboxamide residue (97:3 er) to an aminoisobutyramide residue (33:67 er) under a common set of conditions. An expanded set of catalysts was also evaluated, enabling structure/selectivity correlations to be considered in a mechanistic light.
Collapse
Affiliation(s)
- Anna E Hurtley
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A Stone
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anthony J Metrano
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
24
|
Goh SS, Guduguntla S, Kikuchi T, Lutz M, Otten E, Fujita M, Feringa BL. Desymmetrization of meso-Dibromocycloalkenes through Copper(I)-Catalyzed Asymmetric Allylic Substitution with Organolithium Reagents. J Am Chem Soc 2018; 140:7052-7055. [PMID: 29790736 PMCID: PMC6002767 DOI: 10.1021/jacs.8b02992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
highly regio- and enantioselective (up to >99:1 dr, up to 99:1
er) desymmetrization of meso-1,4-dibromocycloalk-2-enes
using asymmetric allylic substitution with organolithium reagents
to afford enantioenriched bromocycloalkenes (ring size of 5 to 7)
has been achieved. The cycloheptene products undergo an unusual ring
contraction. The synthetic versatility of this Cu(I)-catalyzed reaction
is demonstrated by the concise stereocontrolled preparation of cyclic
amino alcohols, which are privileged chiral structures in natural
products and pharmaceuticals and widely used in synthesis and catalysis.
Collapse
Affiliation(s)
- Shermin S Goh
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Institute of Materials Research and Engineering , 2 Fusionopolis Way, Innovis #08-03 , Singapore 138634
| | - Sureshbabu Guduguntla
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Takashi Kikuchi
- Department of Applied Chemistry , University of Tokyo , 7-3-1, Hongo , Bukyo-ku, Tokyo 113-8656 , Japan.,Rigaku Corporation , 3-9-12 Matsubara-cho , Akishima-shi, Tokyo 196-8666 , Japan
| | - Martin Lutz
- Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Makoto Fujita
- Department of Applied Chemistry , University of Tokyo , 7-3-1, Hongo , Bukyo-ku, Tokyo 113-8656 , Japan
| | - Ben L Feringa
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
25
|
Overview on the Recent Strategies for the Enantioselective Synthesis of 1, 1-Diarylalkanes, Triarylmethanes and Related Molecules Containing the Diarylmethine Stereocenter. ChemCatChem 2018. [DOI: 10.1002/cctc.201701601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Jia T, Cao P, Liao J. Enantioselective synthesis of gem-diarylalkanes by transition metal-catalyzed asymmetric arylations (TMCAAr). Chem Sci 2018; 9:546-559. [PMID: 29629119 PMCID: PMC5869807 DOI: 10.1039/c7sc03404k] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
To date, enantiomerically enriched molecules containing gem(1,1)-diaryl containing tertiary or quaternary stereogenic centers have been readily accessed by transition metal-catalyzed enantioselective or stereoconvergent aryl transfer reactions.
Chiral gem(1,1)-diaryl containing tertiary or quaternary stereogenic centers are present in many natural products and important pharmacophores. While numerous catalytic asymmetric methods enable access to 1,1-diaryl motifs, transition metal-catalyzed asymmetric arylations (TMCAAr) are one of the most powerful methods to prepare enantiopure gem-diarylalkane compounds. The main methodology includes enantioselective 1,2- or 1,4-additions across C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O, C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N and C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds by arylmetallic reagents; aryl cross-couplings of olefins, benzylic (pseudo)halides and aziridines; asymmetric aryl substitution reactions of allylic substrates; and isotopic benzylic C–H arylation.
Collapse
Affiliation(s)
- Tao Jia
- Natural Products Research Center , Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China . .,College of Chemistry and Materials Science , Sichuan Normal University , Chengdu 610068 , People's Republic of China .
| | - Peng Cao
- College of Chemistry and Materials Science , Sichuan Normal University , Chengdu 610068 , People's Republic of China .
| | - Jian Liao
- Natural Products Research Center , Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China . .,College of Chemical Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| |
Collapse
|
27
|
Tian H, Zhang P, Peng F, Yang H, Fu H. Chiral Cyclic Ligand-Enabled Iridium-Catalyzed Asymmetric Arylation of Unactivated Racemic Allylic Alcohols with Anilines. Org Lett 2017; 19:3775-3778. [DOI: 10.1021/acs.orglett.7b01631] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua Tian
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pengxiang Zhang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Peng
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Fu
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Wang Z, He X, Zhang R, Zhang G, Xu G, Zhang Q, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Hydroboration of 1,1-Disubstituted Alkenes. Org Lett 2017; 19:3067-3070. [DOI: 10.1021/acs.orglett.7b01135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zining Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaxia He
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Rui Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guoxing Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
29
|
Intramolecular vinylation of carbanions using N -acyl benzomorpholines as masked vinylureas and vinylcarbamates. CR CHIM 2017. [DOI: 10.1016/j.crci.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chiral Inorganic Nanostructures. Chem Rev 2017; 117:8041-8093. [DOI: 10.1021/acs.chemrev.6b00755] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - André F. de Moura
- Department
of Chemistry, Federal University of São Carlos, CP 676, CEP 13.565-905, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Chen B, Cao P, Yin X, Liao Y, Jiang L, Ye J, Wang M, Liao J. Modular Synthesis of Enantioenriched 1,1,2-Triarylethanes by an Enantioselective Arylboration and Cross-Coupling Sequence. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00300] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bin Chen
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Peng Cao
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Xuemei Yin
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Yang Liao
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Liyin Jiang
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Jialin Ye
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Min Wang
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Jian Liao
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| |
Collapse
|
32
|
Nguyen TNT, Thiel NO, Teichert JF. Copper(i)-catalysed asymmetric allylic reductions with hydrosilanes. Chem Commun (Camb) 2017; 53:11686-11689. [DOI: 10.1039/c7cc07008j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The copper(i)-catalysed asymmetric allylic reduction enables a regio- and stereoselective transfer of a hydride nucleophile in an SN2′-fashion onto allylic bromides.
Collapse
Affiliation(s)
| | - Niklas O. Thiel
- Institut für Chemie, Technische Universität Berlin
- 10623 Berlin
- Germany
| | | |
Collapse
|
33
|
Guduguntla S, Gualtierotti JB, Goh SS, Feringa BL. Enantioselective Synthesis of Di- and Tri-Arylated All-Carbon Quaternary Stereocenters via Copper-Catalyzed Allylic Arylations with Organolithium Compounds. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sureshbabu Guduguntla
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Jean-Baptiste Gualtierotti
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Shermin S. Goh
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
34
|
Kim B, Chinn AJ, Fandrick DR, Senanayake CH, Singer RA, Miller SJ. Distal Stereocontrol Using Guanidinylated Peptides as Multifunctional Ligands: Desymmetrization of Diarylmethanes via Ullman Cross-Coupling. J Am Chem Soc 2016; 138:7939-45. [PMID: 27254785 PMCID: PMC5127171 DOI: 10.1021/jacs.6b03444] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the development of a new class of guanidine-containing peptides as multifunctional ligands for transition-metal catalysis and its application in the remote desymmetrization of diarylmethanes via copper-catalyzed Ullman cross-coupling. Through design of these peptides, high levels of enantioinduction and good isolated yields were achieved in the long-range asymmetric cross-coupling (up to 93:7 er and 76% yield) between aryl bromides and malonates. Our mechanistic studies suggest that distal stereocontrol is achieved through a Cs-bridged interaction between the Lewis-basic C-terminal carboxylate of the peptides with the distal arene of the substrate.
Collapse
Affiliation(s)
- Byoungmoo Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alex J. Chinn
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Daniel R. Fandrick
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Chris H. Senanayake
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Robert A. Singer
- Chemical Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
35
|
Nguyen TNT, Thiel NO, Pape F, Teichert JF. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile. Org Lett 2016; 18:2455-8. [DOI: 10.1021/acs.orglett.6b00941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. N. Thanh Nguyen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Niklas O. Thiel
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Felix Pape
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F. Teichert
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|