1
|
Hwang S, Choi M, Jeong M, Lee C. Synthesis of the C13-C27 Fragment of Madeirolide A Using Visible-Light-Promoted Radical Cyclization. Org Lett 2024; 26:1067-1072. [PMID: 38293710 DOI: 10.1021/acs.orglett.3c04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The convergent synthesis of a fully elaborated C13-C27 fragment of madeirolide A has been achieved. The key features of the synthesis include the stereocontrolled construction of both the THF and THP rings via visible-light-induced iridium-catalyzed radical cyclization and the late-stage union of the two oxacyclic subunits through nickel-catalyzed decarboxylative cross-coupling.
Collapse
Affiliation(s)
- Sunghyun Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minchul Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myungeun Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulbom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
A combined experimental and theoretical analysis on the solid-state supramolecular assemblies of pent‑2-ynol derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Gold(III) catalyzed stereoselective synthesis of dialkyl dihydrofuran acetates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Fariña-Ramos M, García C, Martín VS, Álvarez-Méndez SJ. Synthetic efforts on the road to marine natural products bearing 4- O-2,3,4,6-tetrasubstituted THPs: an update. RSC Adv 2021; 11:5832-5858. [PMID: 35423108 PMCID: PMC8694735 DOI: 10.1039/d0ra10755g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Scientific literature is inundated with secondary metabolites from marine sources. In this ocean of natural products, the presence of recurring patterns has traditionally led scientists to unravel the biosynthetic mechanisms that naturally yield these products, as well as to imitate Nature to prepare them in the laboratory, especially when promising bioactivities and stimulating molecular architectures are involucrate. For instance, natural products containing multisubstituted oxygenated rings and macrocyclic lactones are recurrently selected as targets for developing total syntheses. Thus, in the last decades a noteworthy number of synthetic works regarding miyakolide, madeirolide A and representative compounds of polycavernosides, lasonolides and clavosolides have come to fruition. Up to now, these families of macrolides are the only marine natural products bearing a tetrasubstituted tetrahydropyran ring with carbon substituents at positions 2, 3 and 6, as well as an oxygen at position 4. Their splendid structures have received the attention of the synthetic community, up to the point of starring in dozens of articles, and even some reviews. This work covers all the synthetic studies towards miyakolide and madeirolide A, as well as the synthetic efforts performed after the previous specialised reviews about lasonolide A, polycavernoside A and clavosolides, published in 2006, 2007 and 2016, respectively. In total, this review summarises 22 articles in which these marine natural products with 4-O-2,3,4,6-tetrasubstituted tetrahydropyrans have the leading role.
Collapse
Affiliation(s)
- Marta Fariña-Ramos
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Celina García
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Víctor S Martín
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| |
Collapse
|
5
|
He C, Cai J, Zheng Y, Pei C, Qiu L, Xu X. Gold-Catalyzed Hydroalkoxylation/Povarov Reaction Cascade of Alkynols with N-Aryl Imines: Synthesis of Tetrahydroquinolines. ACS OMEGA 2019; 4:15754-15763. [PMID: 31572879 PMCID: PMC6761745 DOI: 10.1021/acsomega.9b02693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
A one-pot gold-catalyzed hydroalkoxylation/Povarov reaction cascade of alkynols with N-aryl imines or in situ generated iminium has been developed. The protocol provides a facile access to a series of fused tricyclic tetrahydroquinolines with a broad substrate scope using readily available materials under mild conditions. The unique mechanistic feature is the dual function of the gold catalyst, which first catalyzed the intramolecular hydroalkoxylation of alkynols, and upon the formation of dihydrofuran species, promoted the following Povarov reaction with high stereoselectivity.
Collapse
Affiliation(s)
- Ciwang He
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ju Cai
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yang Zheng
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Qiu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Guangdong
Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- E-mail:
| |
Collapse
|
6
|
|
7
|
Feng G, Sun C, Xin X, Wan R, Liu L. Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Wang M, Bai D, Kong L, Liu B, Li X. Ag(I)-Catalyzed Nucleophilic Addition and Friedel–Crafts Alkylation between α-Oxoketene Dithioacetals and Propargyl Carbonates. Org Lett 2018; 20:7775-7778. [DOI: 10.1021/acs.orglett.8b03180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lingheng Kong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Nguyen MH, Imanishi M, Kurogi T, Wan X, Ishmael JE, McPhail KL, Smith AB. Synthetic Access to the Mandelalide Family of Macrolides: Development of an Anion Relay Chemistry Strategy. J Org Chem 2018; 83:4287-4306. [PMID: 29480727 PMCID: PMC5910188 DOI: 10.1021/acs.joc.8b00268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mandelalides comprise a family of structurally complex marine macrolides that display significant cytotoxicity against several human cancer cell lines. Presented here is a full account on the development of an Anion Relay Chemistry (ARC) strategy for the total synthesis of (-)-mandelalides A and L, the two most potent members of the mandelalide family. The design and implementation of a three-component type II ARC/cross-coupling protocol and a four-component type I ARC union permits rapid access respectively to the key tetrahydrofuran and tetrahydropyran structural motifs of these natural products. Other highlights of the synthesis include an osmium-catalyzed oxidative cyclization of an allylic 1,3-diol, a mild Yamaguchi esterification to unite the northern and southern hemispheres, and a late-stage Heck macrocyclization. Synthetic mandelalides A and L displayed potent cytotoxicity against human HeLa cervical cancer cells (EC50, 1.3 and 3.1 nM, respectively). This synthetic approach also provides access to several highly potent non-natural mandelalide analogs, including a biotin-tagged mandelalide probe for future biological investigation.
Collapse
Affiliation(s)
- Minh H. Nguyen
- Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Masashi Imanishi
- Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Taichi Kurogi
- Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Xuemei Wan
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Jane E. Ishmael
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Amos B. Smith
- Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
10
|
Tata RR, Harmata M. Sulfinate Allenyl Carbenoids: Synthesis of 2,5‐Dihydrofurans by Domino Rearrangement and Cyclization. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rama Rao Tata
- Department of Chemistry University of Missouri‐Columbia 601 South College Avenue 65211 Columbia Missouri USA
| | - Michael Harmata
- Department of Chemistry University of Missouri‐Columbia 601 South College Avenue 65211 Columbia Missouri USA
| |
Collapse
|
11
|
Chatterjee A, Saha R, Panja D, Ghosh S, Mondal S, Ghosh A, Das GK. Revisited the mechanism of the transition metal catalyzed cycloetherification of ω-hydroxy propargylic ester: A DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Cooper DA, Robbins E, Tizzard GJ, Coles SJ, O'Brien M. Furanyl Cyclic Ethers: Single and Double Diastereoselectivity in the Synthesis of 2,4-Di and 2,4,5-Trisubstituted Tetrahydropyrans. J Org Chem 2017; 82:3441-3455. [PMID: 28244750 DOI: 10.1021/acs.joc.6b02831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combining the desymmetrization of a prochiral bis-hydroxymethyl group with the epimerization of a chiral furanyl ether in a single transformation, high levels of double diastereoselectivity have been achieved in a synthesis of 2,4,5-trisubstituted tetrahydropyrans, which proceeds under thermodynamic control.
Collapse
Affiliation(s)
- Dennis A Cooper
- Lennard-Jones Building, School of Chemical and Physical Sciences, Keele University , Borough of Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K
| | - Emma Robbins
- Lennard-Jones Building, School of Chemical and Physical Sciences, Keele University , Borough of Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K
| | - Graham J Tizzard
- National Crystallography Service, University of Southampton , Southampton SO17 1BJ, U.K
| | - Simon J Coles
- National Crystallography Service, University of Southampton , Southampton SO17 1BJ, U.K
| | - Matthew O'Brien
- Lennard-Jones Building, School of Chemical and Physical Sciences, Keele University , Borough of Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K
| |
Collapse
|
13
|
Kim J, Jeong W, Rhee YH. Flexible Tetrahydropyran Synthesis from Homopropargylic Alcohols Using Sequential Pd-Au Catalysis. Org Lett 2016; 19:242-245. [PMID: 28004942 DOI: 10.1021/acs.orglett.6b03532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A flexible synthetic method toward highly substituted tetrahydropyran is reported. The key transformation involves atom-efficient sequential metal catalysis consisting of Pd-catalyzed addition of homopropargylic alcohols to alkoxyallene and the subsequent gold(I)-catalyzed cycloisomerization. Notably, this method gives access to both 2,6-cis- and 2,6-trans-tetrahydropyrans possessing diverse substitution patterns.
Collapse
Affiliation(s)
- Jungjoon Kim
- Department of Chemistry, Pohang University of Science and Technology , Hyoja-dong San 31, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Wook Jeong
- Department of Chemistry, Pohang University of Science and Technology , Hyoja-dong San 31, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology , Hyoja-dong San 31, Pohang, Kyungbuk 790-784, Republic of Korea
| |
Collapse
|
14
|
Reddy BVS, Anjum SR, Sridhar B. A novel self-terminated Prins strategy for the synthesis of tetrahydropyran-4-one derivatives and their behaviour in Fisher indole synthesis. RSC Adv 2016. [DOI: 10.1039/c6ra11218h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel self-terminated Prins strategy has been developed for the synthesis of 2-substituted tetrahydropyran-4-one derivatives through a condensation of 3-(phenylthio)but-3-en-1-ol with carbonyl compounds in the presence of 5 mol% of Sc(OTf)3 under mild conditions.
Collapse
Affiliation(s)
- B. V. Subba Reddy
- Centre for Semiochemicals
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - S. Rehana Anjum
- Centre for Semiochemicals
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - B. Sridhar
- Laboratory of X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|