1
|
Siddiqi Z, Sarlah D. Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π-Extensions. Acc Chem Res 2025; 58:1134-1150. [PMID: 40069000 PMCID: PMC12040405 DOI: 10.1021/acs.accounts.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David Sarlah
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Reddy GS, Corey EJ. Highly Position- and Enantioselective Catalytic Epoxidation of Polyolefins Mediated by a Chiral Mn Complex, Including a One-Step Conversion of Squalene to the ( S)-2,3-Epoxide, a Precursor of Natural Steroids and Terpenoids. J Am Chem Soc 2025; 147:1448-1451. [PMID: 39762184 DOI: 10.1021/jacs.4c16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reported herein is the synthesis of a novel chiral dicarboxylic ligand for Mn(II) and the application of the Mn complex to the highly enantio- and position-selective epoxidation of C═C under mild conditions, even with polyolefinic substrates. A stereomechanistic basis for asymmetric induction is suggested.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Grotemeyer EN, Aghaei Z, Jackson TA. Spectroscopic Properties and Reactivity of a Mn III-Hydroperoxo Complex that is Stable at Room Temperature. Chemistry 2024; 30:e202403051. [PMID: 39259036 DOI: 10.1002/chem.202403051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
Manganese catalysts that activate hydrogen peroxide have seen increased use in organic transformations, such as olefin epoxidation and alkane C-H bond oxidation. Proposed mechanisms for these catalysts involve the formation and activation of MnIII-hydroperoxo intermediates. Examples of well-defined MnIII-hydroperoxo complexes are rare, and the properties of these species are often inferred from MnIII-alkylperoxo analogues. In this study, we show that the reaction of the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ (1) with hydrogen peroxide and acid results in the formation of a dark-green MnIII-hydroperoxo species [MnIII(OOH)(6Medpaq)]+ (2). The formulation of 2 is based on electronic absorption, 1H NMR, IR, and ESI-MS data. The thermal decay of 2 follows a first order process, and variable-temperature kinetic studies of the decay of 2 yielded activation parameters that could be compared with those of a MnIII-alkylperoxo analogue. Complex 2 reacts with the hydrogen-atom donor TEMPOH two-fold faster than the MnIII-hydroxo complex 1. Complex 2 also oxidizes PPh3, and this MnIII-hydroperoxo species is 600-fold more reactive with this substrate than its MnIII-alkylperoxo analogue [MnIII(OOtBu)(6Medpaq)]+. DFT and time-dependent (TD) DFT computations are used to compare the electronic structure of 2 with similar MnIII-hydroperoxo and MnIII-alkylperoxo complexes.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| | - Zahra Aghaei
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, 66045, Lawrence, KS, USA
| |
Collapse
|
4
|
Verspeek D, Ahrens S, Wen X, Yang Y, Li YW, Junge K, Beller M. A manganese-based catalyst system for general oxidation of unactivated olefins, alkanes, and alcohols. Org Biomol Chem 2024; 22:2630-2642. [PMID: 38456330 DOI: 10.1039/d4ob00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Non-noble metal-based catalyst systems consisting of inexpensive manganese salts, picolinic acid and various heterocycles enable epoxidation of the challenging (terminal) unactivated olefins, selective C-H oxidation of unactivated alkanes, and O-H oxidation of secondary alcohols with aqueous hydrogen peroxide. In the presence of the in situ generated optimal manganese catalyst, epoxides are generated with up to 81% yield from alkenes and ketone products with up to 51% yield from unactivated alkanes. This convenient protocol allows the formation of the desired products under ambient conditions (room temperature, 1 bar) by employing only a slight excess of hydrogen peroxide with 2,3-butadione as a sub-stoichiometric additive.
Collapse
Affiliation(s)
- Dennis Verspeek
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Sebastian Ahrens
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Xiandong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Kathrin Junge
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Matthias Beller
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| |
Collapse
|
5
|
Siddiqi Z, Bingham TW, Shimakawa T, Hesp KD, Shavnya A, Sarlah D. Oxidative Dearomatization of Pyridines. J Am Chem Soc 2024; 146:2358-2363. [PMID: 38230893 PMCID: PMC11006438 DOI: 10.1021/jacs.3c13603] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Dearomatization of pyridines is a well-established synthetic approach to access piperidines. Although remarkably powerful, existing dearomatization processes have been limited to the hydrogenation or addition of carbon-based nucleophiles to activated pyridiniums. Here, we show that arenophile-mediated dearomatizations can be applied to pyridines to directly introduce heteroatom functionalities without prior substrate activation. The arenophile platform in combination with olefin oxidation chemistry provides access to dihydropyridine cis-diols and epoxides. These previously elusive compounds are now readily accessible and can be used for the downstream preparation of diversely functionalized piperidines.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tanner W. Bingham
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tsukasa Shimakawa
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Kevin D. Hesp
- Treeline Biosciences, 500 Arsenal St, second Floor, Watertown, Massachusetts 02472, United States
| | - Andre Shavnya
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Kim J, Wang J, Ashley DC, Sharma VK, Huang CH. Picolinic Acid-Mediated Catalysis of Mn(II) for Peracetic Acid Oxidation Processes: Formation of High-Valent Mn Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18929-18939. [PMID: 37224105 PMCID: PMC10690714 DOI: 10.1021/acs.est.3c00765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Metal-based advanced oxidation processes (AOPs) with peracetic acid (PAA) have been extensively studied to degrade micropollutants (MPs) in wastewater. Mn(II) is a commonly used homogeneous metal catalyst for oxidant activation, but it performs poorly with PAA. This study identifies that the biodegradable chelating ligand picolinic acid (PICA) can significantly mediate Mn(II) activation of PAA for accelerated MP degradation. Results show that, while Mn(II) alone has minimal reactivity toward PAA, the presence of PICA accelerates PAA loss by Mn(II). The PAA-Mn(II)-PICA system removes various MPs (methylene blue, bisphenol A, naproxen, sulfamethoxazole, carbamazepine, and trimethoprim) rapidly at neutral pH, achieving >60% removal within 10 min in clean and wastewater matrices. Coexistent H2O2 and acetic acid in PAA play a negligible role in rapid MP degradation. In-depth evaluation with scavengers and probe compounds (tert-butyl alcohol, methanol, methyl phenyl sulfoxide, and methyl phenyl sulfone) suggested that high-valent Mn species (Mn(V)) is a likely main reactive species leading to rapid MP degradation, whereas soluble Mn(III)-PICA and radicals (CH3C(O)O• and CH3C(O)OO•) are minor reactive species. This study broadens the mechanistic understanding of metal-based AOPs using PAA in combination with chelating agents and indicates the PAA-Mn(II)-PICA system as a novel AOP for wastewater treatment.
Collapse
Affiliation(s)
- Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C. Ashley
- Department
of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Ryan A, Dempsey SD, Smyth M, Fahey K, Moody TS, Wharry S, Dingwall P, Rooney DW, Thompson JM, Knipe PC, Muldoon MJ. Continuous Flow Epoxidation of Alkenes Using a Homogeneous Manganese Catalyst with Peracetic Acid. Org Process Res Dev 2023; 27:262-268. [PMID: 36844035 PMCID: PMC9942194 DOI: 10.1021/acs.oprd.2c00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 01/15/2023]
Abstract
Epoxidation of alkenes is a valuable transformation in the synthesis of fine chemicals. Described herein are the design and development of a continuous flow process for carrying out the epoxidation of alkenes with a homogeneous manganese catalyst at metal loadings as low as 0.05 mol%. In this process, peracetic acid is generated in situ and telescoped directly into the epoxidation reaction, thus reducing the risks associated with its handling and storage, which often limit its use at scale. This flow process lessens the safety hazards associated with both the exothermicity of this epoxidation reaction and the use of the highly reactive peracetic acid. Controlling the speciation of manganese/2-picolinic acid mixtures by varying the ligand:manganese ratio was key to the success of the reaction. This continuous flow process offers an inexpensive, sustainable, and scalable route to epoxides.
Collapse
Affiliation(s)
- Ailbhe
A. Ryan
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland,Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | - Seán D. Dempsey
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland,Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | - Megan Smyth
- Almac
Group, Craigavon BT63 5QD, United Kingdom
| | - Karen Fahey
- Arran
Chemical Company, Roscommon N37 DN24, Ireland
| | - Thomas S. Moody
- Almac
Group, Craigavon BT63 5QD, United Kingdom,Arran
Chemical Company, Roscommon N37 DN24, Ireland
| | | | - Paul Dingwall
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom
| | | | | | - Peter C. Knipe
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom,
| | - Mark J. Muldoon
- Queen’s
University Belfast, Belfast BT9 5AG, United Kingdom,
| |
Collapse
|
8
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Ide T, Feng K, Dixon CF, Teng D, Clark JR, Han W, Wendell CI, Koch V, White MC. Late-Stage Intermolecular Allylic C-H Amination. J Am Chem Soc 2021; 143:14969-14975. [PMID: 34514799 PMCID: PMC8961995 DOI: 10.1021/jacs.1c06335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allylic amination enables late-stage functionalization of natural products where allylic C-H bonds are abundant and introduction of nitrogen may alter biological profiles. Despite advances, intermolecular allylic amination remains a challenging problem due to reactivity and selectivity issues that often mandate excess substrate, furnish product mixtures, and render important classes of olefins (for example, functionalized cyclic) not viable substrates. Here we report that a sustainable manganese perchlorophthalocyanine catalyst, [MnIII(ClPc)], achieves selective, preparative intermolecular allylic C-H amination of 32 cyclic and linear compounds, including ones housing basic amines and competing sites for allylic, ethereal, and benzylic amination. Mechanistic studies support that the high selectivity of [MnIII(ClPc)] may be attributed to its electrophilic, bulky nature and stepwise amination mechanism. Late-stage amination is demonstrated on five distinct classes of natural products, generally with >20:1 site-, regio-, and diastereoselectivity.
Collapse
Affiliation(s)
- Takafumi Ide
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kaibo Feng
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Charlie F Dixon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Dawei Teng
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joseph R Clark
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wei Han
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chloe I Wendell
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Vanessa Koch
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Ye C, Voet VSD, Folkersma R, Loos K. Robust Superamphiphilic Membrane with a Closed-Loop Life Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008460. [PMID: 33682219 PMCID: PMC11468712 DOI: 10.1002/adma.202008460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Oil-spill remediation is an international environmental challenge, and superamphiphilic membranes, as a promising solution, have recently drawn lots of attention. However, the robustness of the conventional membrane design is less satisfying under severe conditions during practical applications. Additionally, it is unavoidable for the membranes to face a series of foulants in their practical working environment, for example, algae and sand. These foulants will block the membrane, which leads to a new economic and environmental problem in terms of waste management at the end of their life. To address the aforementioned challenges, a new generation of superamphiphilic vitrimer epoxy resin membranes (SAVER) to separate oil and water efficiently is reported. Similar to classical epoxy resins, SAVER shows strong mechanical robustness and sustains exposure to aqua regia and sodium hydroxide solutions. Furthermore, the blocked membrane can be easily recovered when contaminated with mixed foulants by using dynamic transesterification reactions in the polymer network. The ease with which biobased SAVER can be manufactured, used, recycled, and re-used without losing value points to new directions in designing a closed-loop superamphiphilic membrane life cycle.
Collapse
Affiliation(s)
- Chongnan Ye
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Vincent S. D. Voet
- Sustainable PolymersNHL Stenden University of Applied SciencesVan Schaikweg 94Emmen7811 KLThe Netherlands
| | - Rudy Folkersma
- Sustainable PolymersNHL Stenden University of Applied SciencesVan Schaikweg 94Emmen7811 KLThe Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
11
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
12
|
Siddiqi Z, Wertjes WC, Sarlah D. Chemical Equivalent of Arene Monooxygenases: Dearomative Synthesis of Arene Oxides and Oxepines. J Am Chem Soc 2020; 142:10125-10131. [PMID: 32383862 DOI: 10.1021/jacs.0c02724] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Direct epoxidation of aromatic nuclei by cytochrome P450 monooxygenases is one of the major metabolic pathways of arenes in eukaryotes. The resulting arene oxides serve as versatile precursors to phenols, oxepines, or trans-dihydrodiol-based metabolites. Although such compounds have an important biological and chemical relevance, the lack of methods for their production has hampered access to their utility. Herein, we report a general arenophile-based strategy for the dearomative synthesis of arene oxides. The mildness of this method permits access to sensitive monocyclic arene oxides without any noticeable decomposition to phenols. Moreover, this method enables direct conversion of polycyclic arenes and heteroarenes into the corresponding oxepines. Finally, these studies provided direct connection between simple aromatic precursors and complex small organic molecules via arene oxides and oxepines.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - William C Wertjes
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|
14
|
Sulfonic-functionalized MIL-101 as bifunctional catalyst for cyclohexene oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ai C, Zhu F, Wang Y, Yan Z, Lin S. SO 2F 2-Mediated Epoxidation of Olefins with Hydrogen Peroxide. J Org Chem 2019; 84:11928-11934. [PMID: 31436983 DOI: 10.1021/acs.joc.9b01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An inexpensive, mild, and highly efficient epoxidation protocol has been developed involving bubbling SO2F2 gas into a solution of olefin, 30% aqueous hydrogen peroxide, and 4 N aqueous potassium carbonate in 1,4-dioxane at room temperature for 1 h with the formation of the corresponding epoxides in good to excellent yields. The novel SO2F2/H2O2/K2CO3 epoxidizing system is suitable to a variety of olefinic substrates including electron-rich and electron-deficient ones.
Collapse
Affiliation(s)
- Chengmei Ai
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Fuyuan Zhu
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Yanmei Wang
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Zhaohua Yan
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Sen Lin
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| |
Collapse
|
16
|
Zeroual A, Ríos-Gutiérrez M, Amiri O, El Idrissi M, Domingo LR. A molecular electron density theory study of the mechanism, chemo- and stereoselectivity of the epoxidation reaction of R-carvone with peracetic acid. RSC Adv 2019; 9:28500-28509. [PMID: 35529642 PMCID: PMC9071017 DOI: 10.1039/c9ra05309c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022] Open
Abstract
The epoxidation reaction of R-carvone 8 with peracetic acid 9 has been studied within the molecular electron density theory at the B3LYP/6-311(d,p) computational level. The chemo- and stereoisomeric reaction paths involving the two C-C double bonds of R-carvone 8 have been studied. DFT calculations account for the high chemoselectivity involving the C-C double bond of the isopropenyl group and the low diastereoselectivity, in complete agreement with the experimental outcomes. The Baeyer-Villiger reaction involving the carbonyl group of R-carvone 8 has also been analysed. A bonding evolution theory analysis of the epoxidation reaction shows the complexity of the bonding changes taking place along this reaction. Formation of the oxirane ring takes place asynchronously at the end of the reaction by attack of anionic oxygen on the two carbons of the isopropenyl C-C double bond.
Collapse
Affiliation(s)
- Abdellah Zeroual
- Molecular Modeling and Spectroscopy Research Team, Faculty of Science, ChouaïbDoukkali University P.O. Box 20 24000 El Jadida Morocco
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia Dr. Moliner 50, 46100 Burjassot Valencia Spain
| | - Ouafa Amiri
- Laboratory of Organic and Analytical Chemistry, Faculty of Sciences and Techniques, Sultan Moulay Slimane University B. P. 523 Beni-Mellal Morocco
| | - Mohammed El Idrissi
- Molecular Modeling and Spectroscopy Research Team, Faculty of Science, ChouaïbDoukkali University P.O. Box 20 24000 El Jadida Morocco
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University Beni-Mellal Morocco
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia Dr. Moliner 50, 46100 Burjassot Valencia Spain
| |
Collapse
|
17
|
Loukopoulos E, Kostakis GE. Review: Recent advances of one-dimensional coordination polymers as catalysts. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1439163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| | - George E. Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
18
|
Nodzewska A, Watkinson M. Remarkable increase in the rate of the catalytic epoxidation of electron deficient styrenes through the addition of Sc(OTf)3 to the MnTMTACN catalyst. Chem Commun (Camb) 2018; 54:1461-1464. [DOI: 10.1039/c7cc09698d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sc(OTf)3 produces a remarkable enhancement in the activity of the MnTMTACN catalyst in the epoxidation of electron deficient styrenes.
Collapse
Affiliation(s)
- Aneta Nodzewska
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Michael Watkinson
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| |
Collapse
|
19
|
Biswas S, Majee D, Guin S, Samanta S. Metal- and Solvent-Free Approach to Diversely Substituted Picolinates via Domino Reaction of Cyclic Sulfamidate Imines with β,γ-Unsaturated α-Ketocarbonyls. J Org Chem 2017; 82:10928-10938. [DOI: 10.1021/acs.joc.7b01792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumen Biswas
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Debashis Majee
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Soumitra Guin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
20
|
Lagerblom K, Lagerspets E, Keskiväli J, Cook C, Ekholm F, Parviainen A, Repo T. Practical Aerobic Oxidation of Alcohols: A Ligand-Enhanced 2,2,6,6-Tetramethylpiperidine-1-oxy/Manganese Nitrate Catalyst System. ChemCatChem 2017. [DOI: 10.1002/cctc.201700710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kalle Lagerblom
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Emi Lagerspets
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Juha Keskiväli
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Chris Cook
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Filip Ekholm
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Arno Parviainen
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| | - Timo Repo
- Department of Chemistry; Faculty of Science, A. I. Virtasen aukio 1, 00014; University of Helsinki; P.O. Box 55 Finland
| |
Collapse
|
21
|
Yu Y, Jiao L, Wang J, Wang H, Yu C, Hao E, Boens N. Bu4NI/tBuOOH catalyzed, α-regioselective cross-dehydrogenative coupling of BODIPY with allylic alkenes and ethers. Chem Commun (Camb) 2017; 53:581-584. [DOI: 10.1039/c6cc08098g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Bu4NI/tBuOOH-catalyzed, highly regioselective cross-dehydrogenative coupling (CDC) of the α-C–H bond(s) of the BODIPY core has been developed.
Collapse
Affiliation(s)
- Yang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Jun Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education; School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Noël Boens
- Department of Chemistry
- KU Leuven (Katholieke Universiteit Leuven)
- 3001 Leuven
- Belgium
| |
Collapse
|
22
|
Shen D, Saracini C, Lee YM, Sun W, Fukuzumi S, Nam W. Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. J Am Chem Soc 2016; 138:15857-15860. [DOI: 10.1021/jacs.6b10836] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Duyi Shen
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Claudio Saracini
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty
of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
23
|
White KL, Movassaghi M. Concise Total Syntheses of (+)-Haplocidine and (+)-Haplocine via Late-Stage Oxidation of (+)-Fendleridine Derivatives. J Am Chem Soc 2016; 138:11383-9. [PMID: 27510728 PMCID: PMC5014600 DOI: 10.1021/jacs.6b07623] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first total syntheses of (+)-haplocidine and its N1-amide congener (+)-haplocine. Our concise synthesis of these alkaloids required the development of a late-stage and highly selective C-H oxidation of complex aspidosperma alkaloid derivatives. A versatile, amide-directed ortho-acetoxylation of indoline amides enabled our implementation of a unified strategy for late-stage diversification of hexacyclic C19-hemiaminal ether structures via oxidation of the corresponding pentacyclic C19-iminium ions. An electrophilic amide activation of a readily available C21-oxygenated lactam, followed by transannular cyclization and in situ trapping of a transiently formed C19-iminium ion, expediently provided access to hexacyclic C19-hemiaminal ether alkaloids (+)-fendleridine, (+)-acetylaspidoalbidine, and (+)-propionylaspidoalbidine. A highly effective enzymatic resolution of a non-β-branched primary alcohol (E = 22) allowed rapid preparation of both enantiomeric forms of a C21-oxygenated precursor for synthesis of these aspidosperma alkaloids. Our synthetic strategy provides succinct access to hexacyclic aspidosperma derivatives, including the antiproliferative alkaloid (+)-haplocidine.
Collapse
Affiliation(s)
- Kolby L. White
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|