1
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Chowdhury SR, Kim HY, Oh K. Visible Light-Induced Three-Component Alkoxyalkylation of Alkenes with α-Halocarbonyls and Alcohols. J Org Chem 2024; 89:17621-17634. [PMID: 39526650 DOI: 10.1021/acs.joc.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A visible-light-induced three-component alkoxyalkylation of alkenes has been developed under the photocatalysis of fac-Ir(ppy)3. The alkene substrate scope included aryl and aliphatic alkenes as well as electron-rich and electron-deficient alkenes, allowing the facile coupling with a diverse array of α-halocarbonyl compounds. The redox potential-guided orchestration of radical processes with precision allows rapid access to highly functionalized products that are useful building blocks in organic synthesis.
Collapse
Affiliation(s)
- Soumyadeep Roy Chowdhury
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Schaus L, Das A, Knight AM, Jimenez-Osés G, Houk KN, Garcia-Borràs M, Arnold FH, Huang X. Protoglobin-Catalyzed Formation of cis-Trifluoromethyl-Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2023; 62:e202208936. [PMID: 36533936 PMCID: PMC9894577 DOI: 10.1002/anie.202208936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 12/23/2022]
Abstract
Trifluoromethyl-substituted cyclopropanes (CF3 -CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis of trans-CF3 -CPAs, stereoselective production of corresponding cis-diastereomers remains a formidable challenge. We report a biocatalyst for diastereo- and enantio-selective synthesis of cis-CF3 -CPAs with activity on a variety of alkenes. We found that an engineered protoglobin from Aeropyrnum pernix (ApePgb) can catalyze this unusual reaction at preparative scale with low-to-excellent yield (6-55 %) and enantioselectivity (17-99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron-carbenoid and substrates to adopt a pro-cis near-attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3 -CPAs for drug discovery.
Collapse
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anders M Knight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Gonzalo Jimenez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Xiongyi Huang
- Department of Chemistry, Johns-Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Hajdin I, Pajkert R, Keßler M, Han J, Mei H, Röschenthaler GV. Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups. Beilstein J Org Chem 2023; 19:541-549. [PMID: 37153646 PMCID: PMC10155617 DOI: 10.3762/bjoc.19.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
A synthetic route to the bench-stable fluorinated masked carbene reagent diethyl 2-diazo-1,1,3,3,3-pentafluoropropylphosphonate, bearing a trifluoromethyl and a difluoromethyl group is reported for the first time. Its application in CuI-catalyzed cyclopropanation reactions with aromatic and aliphatic terminal alkenes under mild reaction conditions is demonstrated. In total, sixteen new cyclopropanes were synthesized in good to very good yields.
Collapse
Affiliation(s)
- Ita Hajdin
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Romana Pajkert
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Mira Keßler
- Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
5
|
Schaus L, Das A, Knight AM, Jimenez‐Osés G, Houk KN, Garcia‐Borràs M, Arnold FH, Huang X. Protoglobin‐Catalyzed Formation of
cis
‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anders M. Knight
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Gonzalo Jimenez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/M. Aurèlia Capmany, 69 17003 Girona Spain
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Xiongyi Huang
- Department of Chemistry Johns-Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
6
|
Ma Z, Deng Y, He J, Cao S. Solvent-controlled base-free synthesis of bis(trifluoromethyl)-cyclopropanes and -pyrazolines via cycloaddition of 2-trifluoromethyl-1,3-enynes with 2,2,2-trifluorodiazoethane. Org Biomol Chem 2022; 20:5071-5075. [PMID: 35704947 DOI: 10.1039/d2ob00894g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient solvent-controlled synthesis of bis(trifluoromethyl)cyclopropanes and bis(trifluoromethyl)pyrazolines via a [2 + 1] or [3 + 2] cycloaddition reaction of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 was developed. The reactions of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 proceeded smoothly under transition-metal and base-free conditions, affording the expected cycloaddition products in good to excellent yields. When DMAc (N,N-dimethylacetamide) was used as the solvent, bis(trifluoromethyl)pyrazolines were obtained; however, in contrast, bis(trifluoromethyl)cyclopropanes were formed by changing the solvent from DMAc to DCE (1,2-dichloroethane).
Collapse
Affiliation(s)
- Zhihong Ma
- Biotalk Company Limited, Shanghai, 200090, China
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
7
|
Sperga A, Zacs D, Veliks J. Iron-Catalyzed Fluoromethylene Transfer from a Sulfonium Reagent. Org Lett 2022; 24:4474-4478. [PMID: 35699424 DOI: 10.1021/acs.orglett.2c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the first example of an iron porphyrin catalyzed fluoromethylene transfer from (2,4-dimethylphenyl)(fluoromethyl)(phenyl)sulfonium tetrafluoroborate to unactivated alkenes. The fluorocarbene or fluoromethylene synthon is the smallest "organic" node in a molecular graph of the organofluorine compounds. In this work, we present alternative solution to unavailable fluorodiazomethane (CHFN2), a missing one-carbon C1 piece in fluorine chemistry, by using a fluoromethylsulfonium reagent.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
8
|
Kumar A, Jamali MF, Thomas S, Ahamad S, Kant R, Mohanan K. Additive‐Free Synthesis of Trifluoromethylated Spiro Cyclopropanes and Their Transformation into Trifluoromethylated Building Blocks. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anuj Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Muhammad Fahad Jamali
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shilpa Thomas
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Shakir Ahamad
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Department of Chemistry Aligarh Muslim University Aligarh 202002, UP India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Chen T, Wang A, Zhang L, Wei C, Huang J, Liu X, Fu Z. Formal [4 + 1] annulation of fluorinated sulfonium salt with cyclic unsaturated imines to access CF 3-substituted pyrroles. Org Biomol Chem 2021; 19:3128-3133. [PMID: 33885566 DOI: 10.1039/d1ob00218j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formal [4 + 1] annulation of easily available fluorinated sulfonium salt with cyclic unsaturated imines has been successfully developed. A structurally diverse set of CF3-substituted dihydropyrroles was efficiently constructed in acceptable to excellent yields with excellent diastereoselectivities. The resulting CF3-containing dihydropyrroles from this transition metal-free strategy could be easily transformed to pyrroles in good yields under basic conditions.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu W, Lin J, Xiao J, Cao Y, Ma Y. Recent Advances in the Synthesis of CF
3
‐ or HCF
2
‐Substituted Cyclopropanes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wen‐Feng Wu
- College of Chemistry and Materials Engineering Guiyang University 103 Jianlongdong Road Nanming District Guiyang Guizhou 550005 P. R. China
| | - Jin‐Hong Lin
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Ji‐Chang Xiao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Yu‐Cai Cao
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins Shanghai Research Institute of Chemical Industry Co., Ltd. Shanghai 200062 P. R. China
| | - Yanfang Ma
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining 810008 P. R. China
| |
Collapse
|
11
|
Vaishak TB, Soumya PK, Saranya PV, Anilkumar G. Recent advances and prospects in the iron-catalyzed trifluoromethylation reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00499a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of effective methods to create a C–CF3 bond has attracted great attention in organofluorine chemistry and also in homogeneous catalysis.
Collapse
Affiliation(s)
| | | | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- 686560 India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
12
|
Sicard AJ, Baker RT. Fluorocarbon Refrigerants and their Syntheses: Past to Present. Chem Rev 2020; 120:9164-9303. [DOI: 10.1021/acs.chemrev.9b00719] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandre J. Sicard
- Department of Chemistry and Biomolecular Science and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Science and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Lin JH, Xiao JC. Fluorinated Ylides/Carbenes and Related Intermediates from Phosphonium/Sulfonium Salts. Acc Chem Res 2020; 53:1498-1510. [PMID: 32786338 DOI: 10.1021/acs.accounts.0c00244] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the special effects of the fluorine element, including high electronegativity and small atomic radius, the incorporation of a fluorinated group into organic molecules may modify their physical, chemical, and biological properties. Fluorine-containing compounds have found widespread application in a variety of areas, and thus, the development of efficient reagents and methods for the incorporation of fluorinated groups has become a subject of significant interest.Described in this Account are our recent discoveries in the chemistry of fluorinated ylides/carbenes and related intermediates generated from phosphonium/sulfonium salts. Initially, we obtained the (triphenylphosphonio) difluoroacetate, Ph3P+CF2CO2- (PDFA), which was proposed as a reactive intermediate but had never been successfully synthesized. PDFA, shelf-stable and easy to prepare, is not only a mild ylide (Ph3P+CF2-) reagent, but also an efficient difluorocarbene source. It can directly generate difluorocarbene, via the first generation of ylide Ph3P+CF2-, simply under warming conditions without the need for any additive. Interestingly, difluorocarbene chemistry was then discovered by using PDFA as a reagent. Difluorocarbene can be oxidized to CF2═O, can react with elemental sulfur to afford CF2═S, and can be trapped by NaNH2 or NH3 to give CN-. The development of these processes into synthetic tools allowed us to achieve various reactions, including the challenging 18F-trifluoromethylthiolation and cyanodifluoromethylation. It was found that a substituent on the cation of a phosphonium salt can be directly transferred as a nucleophile despite the cation's high electrophilicity. This transfer process is like an "umpolung" of the cation, which may provide more opportunities for the synthetic utilities of phosphonium salts. The investigation of this transfer process led us to find that iodophosphonium salts, active intermediates which can be easily generated, may efficiently promote deoxygenative functionalizations of aldehydes and alcohols. Dehydroxylative substitution of alcohols by this protocol permits the use of unprotected amines with higher pKa values as nucleophiles, which is an attractive feature compared with the Mitsunobu reaction. On the basis of the ylide-to-carbene process (Ph3P+CF2- → :CF2), we further developed sulfonium salts as precursors of fluorinated ylides and fluorinated methyl carbenes. In particular, the studies on difluoromethylcarbene, remaining largely unexplored, may deserve more attention. The discoveries may find utility in the synthesis of biologically active fluorine-containing molecules.
Collapse
Affiliation(s)
- Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Taeufer T, Pospech J. Palladium-Catalyzed Synthesis of N,N-Dimethylanilines via Buchwald–Hartwig Amination of (Hetero)aryl Triflates. J Org Chem 2020; 85:7097-7111. [DOI: 10.1021/acs.joc.0c00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tobias Taeufer
- Leibniz Institute for Catalysis at Rostock University, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jola Pospech
- Leibniz Institute for Catalysis at Rostock University, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
15
|
Picher MI, Plietker B. Fe-Catalyzed Selective Cyclopropanation of Enynes under Photochemical or Thermal Conditions. Org Lett 2019; 22:340-344. [DOI: 10.1021/acs.orglett.9b04521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Idrissa Picher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Bernd Plietker
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| |
Collapse
|
16
|
Chen T, Zhang Y, Fu Z, Huang W. Cyclopropanation of Fluorinated Sulfur Ylides with 1‐Azadienes: Facile Synthesis of CF
3
‐Substituted Spiro Scaffolds. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
17
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
18
|
Cyr P, Flynn-Robitaille J, Boissarie P, Marinier A. Mild and Diazo-Free Synthesis of Trifluoromethyl-Cyclopropanes Using Sulfonium Ylides. Org Lett 2019; 21:2265-2268. [PMID: 30883143 DOI: 10.1021/acs.orglett.9b00557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of several 1,1-disubstituted trifluoromethyl-cyclopropanes (TFCPs), known as tert-butyl bioisosteres, has been achieved from the reaction between trifluoromethylalkenes and unstabilized sulfonium ylides in yields of ≤97%. This method offers practical access to this cyclopropyl moiety of pharmacological interest, employing a commercially available reagent at low temperatures. The synthesis of cyclopropanes bearing other electron-withdrawing groups as well as trisubstituted TFCPs was also accomplished.
Collapse
Affiliation(s)
- Patrick Cyr
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Joël Flynn-Robitaille
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Patrick Boissarie
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Anne Marinier
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada.,Département de chimie, Faculté des Arts et Sciences , Université de Montréal , Montreal , QC H3C 3J7 , Canada.,Département de pharmacologie, Faculté de Médecine , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| |
Collapse
|
19
|
Abstract
Cyclopropanes, one of the most important strained rings, have gained much attention for more than a century because of their interesting and unique reactivity. They not only exist in many natural products, but have also been widely used in the fields of organic synthesis, medicinal chemistry and materials science as versatile building blocks. Based on the sustainable development in this area, this review mainly focuses on the recent advances in the synthesis of cyclopropanes classified by the type of catalytic system, including regio-, diastereo-, and enantio-selective reactions.
Collapse
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | |
Collapse
|
20
|
Veliks J, Kazia A. Fluoromethylene Transfer from Diarylfluoromethylsulfonium Salts: Synthesis of Fluorinated Epoxides. Chemistry 2019; 25:3786-3789. [PMID: 30681208 DOI: 10.1002/chem.201900349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 01/17/2023]
Abstract
Diarylfluoromethyl sulfonium salts are efficient fluoromethylene transfer reagents equivalent to fluorocarbene, which is difficult to access. This was demonstrated by the development of a monofluorinated Johnson-Corey-Chaykovsky reaction with ketones and aldehydes, delivering uncommon 2-unsubstituted fluoroepoxides. This is the first evidence for the feasibility of sulfur fluoromethylylide and its action as a reaction intermediate.
Collapse
Affiliation(s)
- Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
21
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
22
|
Neuhaus JD, Bauer A, Pinto A, Maulide N. A Catalytic Cross-Olefination of Diazo Compounds with Sulfoxonium Ylides. Angew Chem Int Ed Engl 2018; 57:16215-16218. [PMID: 30264529 PMCID: PMC6283242 DOI: 10.1002/anie.201809934] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/31/2022]
Abstract
A ruthenium‐catalysed cross‐olefination of diazo compounds and sulfoxonium ylides is presented. Our reaction design exploits the intrinsic difference in reactivity of diazo compounds and sulfoxonium ylides as both carbene precursors and nucleophiles, which results in a highly selective reaction.
Collapse
Affiliation(s)
- James D Neuhaus
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Adriano Bauer
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Alexandre Pinto
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
23
|
Neuhaus JD, Bauer A, Pinto A, Maulide N. Eine katalytische Kreuz‐Olefinierung von Diazoverbindungen mit Sulfoxonium‐Yliden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- James D. Neuhaus
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Adriano Bauer
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Alexandre Pinto
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|
24
|
Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01492] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
- Ikerbasque, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Iosune Arrastia
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| | - Ana Arrieta
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Fernando P. Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| |
Collapse
|
25
|
Hommelsheim R, Hock KJ, Schumacher C, Hussein MA, Nguyen TV, Koenigs RM. Cyanomethyl anion transfer reagents for diastereoselective Corey-Chaykovsky cyclopropanation reactions. Chem Commun (Camb) 2018; 54:11439-11442. [PMID: 30250960 DOI: 10.1039/c8cc05602a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A readily available and bench-stable cyanomethyl sulfonium salt was used in highly diastereoselective Corey-Chaykovsky cyclopropanation reactions of electron-poor olefins. This efficient method provides a rapid route to access densely functionalized cyclopropyl nitriles.
Collapse
Affiliation(s)
- Renè Hommelsheim
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Neuhaus JD, Oost R, Merad J, Maulide N. Sulfur-Based Ylides in Transition-Metal-Catalysed Processes. Top Curr Chem (Cham) 2018; 376:15. [PMID: 29654469 PMCID: PMC5899105 DOI: 10.1007/s41061-018-0193-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/22/2018] [Indexed: 01/05/2023]
Abstract
Traditionally employed in the synthesis of small ring systems and rearrangement chemistry, sulfur-based ylides occupy a unique position in the toolbox of the synthetic organic chemist. In recent years a number of pioneering researchers have looked to expand the application of these unorthodox reagents through the use of transition metal catalysis. The strength and flexibility of such a combination have been shown to be of key importance in developing powerful novel methodologies. This chapter summarises recent developments in transition metal-catalysed sulfonium/sulfoxonium ylide reactions, as well as providing a historical perspective. In overviewing the successes in this area, the authors hope to encourage others into this growing field.
Collapse
Affiliation(s)
- James D Neuhaus
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Rik Oost
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Jérémy Merad
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group. Molecules 2018; 23:molecules23040792. [PMID: 29596367 PMCID: PMC6017490 DOI: 10.3390/molecules23040792] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/29/2023] Open
Abstract
Carbene transfer reactions are very important transformations in organic synthesis, allowing the generation of structurally challenging products by catalysed cyclopropanation, cyclopropenation, carbene C-H, N-H, O-H, S-H, and Si-H insertion, and olefination of carbonyl compounds. In particular, chiral and achiral metalloporphyrins have been successfully explored as biomimetic catalysts for these carbene transfer reactions under both homogeneous and heterogeneous conditions. In this work the use of synthetic metalloporphyrins (MPorph, M = Fe, Ru, Os, Co, Rh, Ir, Sn) as homogeneous or heterogeneous catalysts for carbene transfer reactions in the last years is reviewed, almost exclusively focused on the literature since the year 2010, except when reference to older publications was deemed to be crucial.
Collapse
|
28
|
Duan Y, Lin JH, Xiao JC, Gu YC. Difluoromethylcarbene for iron-catalyzed cyclopropanation. Chem Commun (Camb) 2018; 53:3870-3873. [PMID: 28317978 DOI: 10.1039/c7cc01636k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Difluoroethylsulfonium salt, Ph2S+CH2CF2H OTf-, was developed into a convenient difluoromethylcarbene reagent for the iron-catalyzed cyclopropanation of terminal olefins, giving various difluoromethyl-cyclopropanes with excellent diastereoselectivities and in high yields.
Collapse
Affiliation(s)
- Yaya Duan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| |
Collapse
|
29
|
Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L. Synthesis of 5-(Trifluoromethyl)pyrazolines by Formal [4 + 1]-Annulation of Fluorinated Sulfur Ylides and Azoalkenes. Org Lett 2018; 20:934-937. [DOI: 10.1021/acs.orglett.7b03811] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanzhou Yang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Gao
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qian Luo
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ling Fang
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
30
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Wang SM, Song HX, Wang XY, Liu N, Qin HL, Zhang CP. Palladium-catalyzed Mizoroki-Heck-type reactions of [Ph 2SR fn][OTf] with alkenes at room temperature. Chem Commun (Camb) 2018; 52:11893-11896. [PMID: 27711281 DOI: 10.1039/c6cc06089g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first Pd-catalyzed Mizoroki-Heck-type reaction of [Ph2SRfn][OTf] with alkenes is described. The reaction of [Ph2SRfn][OTf] (Rfn = CF3, CH2CF3) with alkenes in the presence of 10 mol% Pd[P(t-Bu)3]2 and TsOH at room temperature provided the corresponding phenylation products in good to high yields. The bases that benefit the traditional Mizoroki-Heck reactions severely inhibited the transformation with [Ph2SRfn][OTf], whereas acids significantly improved the reaction. This protocol supplies a new class of cross-coupling partners for Mizoroki-Heck-type reactions and gains important insights into the reactivity of phenylsulfonium salts either with or without fluorine-containing alkyl groups as the promising phenylation reagents in organic synthesis.
Collapse
Affiliation(s)
- Shi-Meng Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Hai-Xia Song
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Xiao-Yan Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Nan Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
32
|
Tian ZY, Hu YT, Teng HB, Zhang CP. Application of arylsulfonium salts as arylation reagents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Abstract
Cyclopropanes have gained much attention by virtue of their interesting structure and unique reactivity. This review discusses the recent advances in the synthesis of cyclopropanes, and some of the related applications will be discussed.
Collapse
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| | - Zhiming Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
34
|
Pan XY, Zhao Y, Qu HA, Lin JH, Hang XC, Xiao JC. Tri- and di-fluoroethylation of alkenes by visible light photoredox catalysis. Org Chem Front 2018. [DOI: 10.1039/c8qo00082d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The photoredox-catalyzed solvent-dependent tri-/di-fluoroethylation of alkenes with sulfonium salts (Ph2S+CH2RF TfO−) (RF = CF3 or HCF2) is described.
Collapse
Affiliation(s)
- Xiao-Yang Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- Key Laboratory of Organofluorine Chemistry
| | - Yue Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- Key Laboratory of Organofluorine Chemistry
| | | | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
35
|
Tian ZY, Wang SM, Jia SJ, Song HX, Zhang CP. Sonogashira Reaction Using Arylsulfonium Salts as Cross-Coupling Partners. Org Lett 2017; 19:5454-5457. [DOI: 10.1021/acs.orglett.7b02764] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ze-Yu Tian
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Su-Jiao Jia
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hai-Xia Song
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
36
|
Huang QX, Zheng QT, Duan Y, Lin JH, Xiao JC, Zheng X. Diastereoselective Synthesis of CF3-Containing Vicinal Diamines. J Org Chem 2017; 82:8273-8281. [DOI: 10.1021/acs.joc.7b01261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiu-xia Huang
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qu-tong Zheng
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yaya Duan
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing Zheng
- Institute
of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation
Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
37
|
Hock KJ, Hommelsheim R, Mertens L, Ho J, Nguyen TV, Koenigs RM. Corey–Chaykovsky Reactions of Nitro Styrenes Enable cis-Configured Trifluoromethyl Cyclopropanes. J Org Chem 2017. [DOI: 10.1021/acs.joc.7b00951] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katharina J. Hock
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- School
of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Renè Hommelsheim
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Lucas Mertens
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Junming Ho
- School
of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Thanh V. Nguyen
- School
of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Rene M. Koenigs
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- School
of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
38
|
Bos M, Poisson T, Pannecoucke X, Charette AB, Jubault P. Recent Progress Toward the Synthesis of Trifluoromethyl- and Difluoromethyl-Substituted Cyclopropanes. Chemistry 2017; 23:4950-4961. [DOI: 10.1002/chem.201604564] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Maxence Bos
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Thomas Poisson
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - Xavier Pannecoucke
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences; Department of Chemistry; Université de Montréal, PO Box 6128, Station Downtown; Montréal Québec H3C 3J7 Canada
| | - Philippe Jubault
- Normandie Univ; INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014); 76000 Rouen France
| |
Collapse
|
39
|
Oost R, Neuhaus JD, Merad J, Maulide N. Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. MODERN YLIDE CHEMISTRY 2017. [DOI: 10.1007/430_2017_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Duan Y, Lin JH, Xiao JC, Gu YC. Fe-Catalyzed insertion of fluoromethylcarbenes generated from sulfonium salts into X–H bonds (X = Si, C, P). Org Chem Front 2017. [DOI: 10.1039/c7qo00430c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Fe-catalyzed insertion of fluoromethylcarbenes including trifluoromethylcarbene and difluoromethylcarbene into X–H (X = Si, C and P) bonds is described.
Collapse
Affiliation(s)
- Yaya Duan
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Yu-Cheng Gu
- Syngenta
- Jealott's Hill International Research Centre
- Bracknell
- UK
| |
Collapse
|
41
|
Solvent-free synthesis of alkyl and fluoroalkyl sulfonium salts from sulfides and fluoroalkyl trifluoromethanesulfonates. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Wang XY, Song HX, Wang SM, Yang J, Qin HL, Jiang X, Zhang CP. Pd-catalyzed Suzuki–Miyaura cross-coupling of [Ph 2 SR][OTf] with arylboronic acids. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|