1
|
Feng JY, Hu JB, Liu Y, He YY, Li H, Peng JB. Mo-Mediated Reductive Cyclization/Allylation of 2-Alkynyl Nitroarenes with 1,3-Dienes: Synthesis of 3-Allylindoles. Org Lett 2025; 27:3584-3589. [PMID: 40152817 DOI: 10.1021/acs.orglett.5c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
3-Allylindoles constitute a key structural feature in many natural products and bioactive compounds. In this work, we developed a Mo-mediated reductive cyclization/allylation of 2-alkynyl nitroarenes with 1,3-dienes. Using Mo(CO)6 as both the reductant and the catalyst, a broad range of functionalized 3-allylindoles were prepared in good to excellent yields from easily available 2-alkynylnitroarenes and 1,3-dienes as starting materials.
Collapse
Affiliation(s)
- Jia-Yi Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jian-Bang Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yi Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hongguang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
2
|
Hu L, Xiang Y, Lan XB, Xie Y. An Intermolecular Hydroarylation of Unactivated Arylcyclopropane via Re 2O 7/HFIP-Mediated Ring Opening. Org Lett 2024; 26:2085-2090. [PMID: 38441049 DOI: 10.1021/acs.orglett.4c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.
Collapse
Affiliation(s)
- Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Xiang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
3
|
Shorokhov VV, Lebedev DS, Boichenko MA, Zhokhov SS, Trushkov IV, Ivanova OA. A simple method for the synthesis of isoindoline derivatives. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Tang P, Wei YY, Wen L, Ma HJ, Yang Y, Jiang Y. MgI 2-Catalyzed Nucleophilic Ring-Opening Reactions of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. J Org Chem 2022; 87:10890-10901. [PMID: 35918174 DOI: 10.1021/acs.joc.2c01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MgI2-catalyzed nucleophilic ring-opening reactions of donor-acceptor cyclopropanes with indoline-2-thiones as easy-to-handle sulfur nucleophiles were investigated. A series of functionalized γ-indolylthio butyric acid derivatives were synthesized in good to excellent yields under mild reaction conditions. Furthermore, the thioether functionalized ring-opening products could be transformed to sulfone and methionine analogues.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - You-Yuan Wei
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
5
|
Wang J, Xie J, Lee WCC, Wang DS, Zhang XP. Radical differentiation of two ester groups in unsymmetrical diazomalonates for highly asymmetric olefin cyclopropanation. CHEM CATALYSIS 2022; 2:330-344. [PMID: 35494099 PMCID: PMC9049825 DOI: 10.1016/j.checat.2021.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diazomalonates have been demonstrated as effective metalloradicophiles for asymmetric radical olefin cyclopropanation via Co(II)-metalloradical catalysis (MRC). Supported by D 2-symmetric chiral amidoporphyrin ligand, Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) with effective differentiation of the two ester groups for asymmetric cyclopropanation, enabling stereoselective construction of 1,1-cyclopropanediesters bearing two contiguous chiral centers, including all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to broad-ranging olefins and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1-cyclopropanediesters in high yields with both high diastereoselectivity and enantioselectivity. Combined computational and experimental studies support the underlying stepwise radical mechanism for Co(II)-catalyzed cyclopropanation. In addition to functioning as 1,3-dipoles for forming five-membered structures, enantioenriched (E)-1,1-cyclopropanediesters serve as useful building blocks for stereoselective synthesis of different cyclopropane derivatives. In addition, the enantioenriched (E)-1,1-cyclopropanediesters can be stereoselectively converted to (Z)-diastereomers.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
- Correspondence:
| |
Collapse
|
6
|
Kamble OS, Khatravath M, Dandela R. Applications of Ethynylanilines as Substrates for Construction of Indoles and Indole‐Substituted Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Omkar S. Kamble
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| | - Mahender Khatravath
- Department of Chemistry Central university of South Bihar, Gaya SH-7, Panchanpur Road, Karhara, Post Fatehpur, Gaya Bihar 824236 India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| |
Collapse
|
7
|
Chakraborty N, Dahiya A, Rakshit A, Modi A, Patel BK. An expedient route to tricyanovinylindoles and indolylmaleimides from o-alkynylanilines utilising DMSO as a one-carbon synthon. Org Biomol Chem 2021; 19:6847-6857. [PMID: 34318852 DOI: 10.1039/d1ob01086g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd(ii)/Cu(ii) catalysed domino synthesis of tricyanovinylindoles has been achieved using DMSO as a one-carbon synthon. The reaction proceeds via the construction of 2-aryl-3-formyl indole followed by sequential addition of malononitrile and a CN resulting in two C-C, one C[double bond, length as m-dash]C and one C-N bonds in the final product. Furthermore, post-synthetic modification results in the unprecedented formation of 4-cyano-3-indolylmaleimides. Photophysical studies of selected compounds show emission in the visible range.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | | | | | | | | |
Collapse
|
8
|
Kolb S, Ahlburg NL, Werz DB. Friedel-Crafts-Type Reactions with Electrochemically Generated Electrophiles from Donor-Acceptor Cyclopropanes and -Butanes. Org Lett 2021; 23:5549-5553. [PMID: 34231368 DOI: 10.1021/acs.orglett.1c01890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a general electrochemical method to functionalize donor-acceptor (D-A) cyclopropanes and -butanes with arenes utilizing Friedel-Crafts-type reactivity. The catalyst-free strategy relies on the direct anodic oxidation of the strained carbocycles, which leads after C(sp3)-C(sp3) cleavage to radical cations that act as electrophiles for the arylation reaction. Broad reaction scopes in regard to cyclopropanes, cyclobutanes, and aromatic reaction partners are presented. Additionally, a plausible electrolysis mechanism is proposed.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Nils L Ahlburg
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor-Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp 3 )-C(sp 3 ) Cleavage Mode. Angew Chem Int Ed Engl 2021; 60:15928-15934. [PMID: 33890714 PMCID: PMC8362004 DOI: 10.1002/anie.202101477] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Indexed: 12/03/2022]
Abstract
We describe the first electrochemical activation of D-A cyclopropanes and D-A cyclobutanes leading after C(sp3 )-C(sp3 ) cleavage to the formation of highly reactive radical cations. This concept is utilized to formally insert molecular oxygen after direct or DDQ-assisted anodic oxidation of the strained carbocycles, delivering β- and γ-hydroxy ketones and 1,2-dioxanes electrocatalytically. Furthermore, insights into the mechanism of the oxidative process, obtained experimentally and by additional quantum-chemical calculations are presented. The synthetic potential of the reaction products is demonstrated by diverse derivatizations.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Martin Petzold
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Felix Brandt
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph R. Jacob
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
10
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor–Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp
3
)−C(sp
3
) Cleavage Mode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Martin Petzold
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Felix Brandt
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
11
|
Ghosh K, Das S. Recent advances in ring-opening of donor acceptor cyclopropanes using C-nucleophiles. Org Biomol Chem 2021; 19:965-982. [PMID: 33471020 DOI: 10.1039/d0ob02437f] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ring-opening transformations of donor-acceptor cyclopropanes (DAC) with carbon-centered nucleophiles is a simple, straight-forward approach to 1,3-bifunctional compounds that has witnessed remarkable progress over the past several years. To date, different reactivity patterns of DACs have been successfully exploited in racemic/stereoselective syntheses of various acyclic compounds or carbocycles with an impressive structural diversity. The thriving strategies have been successfully utilized in multistep synthesis of complex target molecules. Herein, the recent advances (2015-present) in the ring-opening of DAC involving electron rich arenes and indoles, active methylene compounds, various dipolarophiles, organoborates/boronates, vinyl ethers etc. following Friedel-Crafts alkylation, annulation/formal cycloaddition reaction, organocatalytic reaction, Nazarov cyclisation etc. are presented.
Collapse
Affiliation(s)
- Koena Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India.
| | - Subhomoy Das
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
12
|
Settipalli PC, Reddy YP, Gudise VB, Anwar S. Knoevenagel‐Friedel‐Crafts‐Hemiketalization Triple Cascade Reaction: A Diastereoselective Formal [1+2+3] Cyclization Towards Indenonaphthopyran Scaffolds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Poorna Chandrasekhar Settipalli
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Yeruva Pavankumar Reddy
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Veera Babu Gudise
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Shaik Anwar
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| |
Collapse
|
13
|
Singh P, Varshnaya RK, Dey R, Banerjee P. Donor–Acceptor Cyclopropanes as an Expedient Building Block Towards the Construction of Nitrogen‐Containing Molecules: An Update. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901332] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Priyanka Singh
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar, Punjab 140001 India
| | - Rohit Kumar Varshnaya
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar, Punjab 140001 India
| | - Raghunath Dey
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar, Punjab 140001 India
| | - Prabal Banerjee
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar, Punjab 140001 India
| |
Collapse
|
14
|
Kundu S, Kayet A, Baidya R, Satyanarayana L, Maiti DK. Nanofibrils of a Cu II-Thiophenyltriazine-Based Porous Polymer: A Diverse Heterogeneous Nanocatalyst. ACS OMEGA 2020; 5:394-405. [PMID: 31956787 PMCID: PMC6964281 DOI: 10.1021/acsomega.9b02904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Herein, we report knitting of a thiophenyltriazine-based porous organic polymer (TTPOP) with high surface area and high abundance of nitrogen and sulfur sites, synthesized through a simple one-step Friedel-Crafts reaction of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine and formaldehyde dimethyl acetal in the presence of anhydrous FeCl3, and thereafter grafting of Cu(OAc)2·H2O in the porous polymer framework to achieve the potential catalyst (CuII-TTPOP). TTPOP and CuII-TTPOP were characterized thoroughly utilizing solid-state 13C-CP MAS NMR, Fourier transform infrared, wide-angle powder X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy and surface imaging by transmission electron microscopy and field emission scanning electron microscopy. The porosity of the nanomaterials was observed in the surface imaging and verified through conducting N2 gas adsorption techniques. Keeping in mind the tremendous importance of C-C and C-N coupling and cyclization processes, the newly synthesized CuII-TTPOP was employed successfully for a wide range of organic catalytic transformations under mild conditions to afford directly valuable diindolylmethanes and spiro-analogues, phthalimidines, propargyl amines, and their sugar-based chiral compounds with high yields using readily available substrates. The highly stable new heterogeneous catalyst showed outstanding sustainability, robustness, simple separation, and recyclability.
Collapse
Affiliation(s)
- Sudipta
K. Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Anirban Kayet
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Ramlal Baidya
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Lanka Satyanarayana
- Analytical
Department, CSIR-Indian Institute of Chemical
Technology, Uppal Road, Hyderabad 500007, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
15
|
Hong K, Zhou S, Hu W, Xu X. Rh-Catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00294a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Rh-catalyzed nitrene/alkyne metathesis (NAM) cascade reaction terminated by a formal C–N bond insertion has been developed, which provides facile access to the tricyclic 3-iminoindolines in good yields with broad substrate scope.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
16
|
Neto JSS, Zeni G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org Chem Front 2020. [DOI: 10.1039/c9qo01315f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights ten years of success in the synthesis of indoles using alkynes and nitrogen sources as substrates.
Collapse
Affiliation(s)
- José Sebastião Santos Neto
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| | - Gilson Zeni
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE
- UFSM
- Santa Maria
| |
Collapse
|
17
|
Wang D, Zhao J, Chen J, Xu Q, Li H. Intramolecular Arylative Ring Opening of Donor‐Acceptor Cyclopropanes in the Presence of Triflic Acid: Synthesis of 9
H
‐Fluorenes and 9,10‐Dihydrophenanthrenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dongyang Wang
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Jing Zhao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Jun Chen
- Beijing Institute of Microchemistry No.15 Xinjiangongmen Road, Haidian District Beijing 100091 China
| | - Qing Xu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Huan Li
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| |
Collapse
|
18
|
Clarke AK, Ho HE, Rossi‐Ashton JA, Taylor RJK, Unsworth WP. Indole Synthesis Using Silver Catalysis. Chem Asian J 2019; 14:1900-1911. [DOI: 10.1002/asia.201900309] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hon E. Ho
- Department of ChemistryUniversity of York York YO10 5DD UK
| | | | | | | |
Collapse
|
19
|
Wang X, He D, Huang Y, Fan Q, Wu W, Jiang H. Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon-Carbon Bond Cleavage Using Molecular Oxygen. J Org Chem 2018; 83:5458-5466. [PMID: 29687708 DOI: 10.1021/acs.joc.8b00378] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed process for the synthesis of substituted quinazolines from benzonitriles and 2-ethynylanilines using molecular oxygen (O2) as sole oxidant is described. The mild catalytic system enabled the effective cleavage of the C-C triple bond and construction of new C-N and C-C bonds in one operation. Furthermore, the compound N, N-dimethyl-4-(2-(4-(trifluoromethyl)phenyl)quinazolin-4-yl)aniline (3dj) exhibited obvious aggregation-induced emission phenomenon, and the fluorescence quantum yield (ΦF,film) and lifetime (τfilm) were measured to be 45.5% and 5.8 ns in thin films state, respectively.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Dandan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Qihang Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
20
|
Mantovani AC, Hernández JG, Bolm C. Synthesis of 3-Iodobenzofurans by Electrophilic Cyclization under Solventless Conditions in a Ball Mill. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anderson C. Mantovani
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
21
|
Dagar A, Guin S, Samanta S. AgSbF6
-Catalyzed Tandem Reaction of 2-Alkynylanilines with Cyclic Enynones: Efficient access to 3-Furo[3,2-c
]chromenylindoles and Related Scaffolds. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anuradha Dagar
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Soumitra Guin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| |
Collapse
|
22
|
Kayet A, Singh VK. A one-pot synthesis of 2,2'-disubstituted diindolylmethanes (DIMs) via a sequential Sonogashira coupling and cycloisomerization/C3-functionalization of 2-iodoanilines. Org Biomol Chem 2017; 15:6997-7007. [PMID: 28792550 DOI: 10.1039/c7ob01701d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Pd(ii)-Ag(i) catalyzed highly efficient synthesis of diindolylmethane has been developed. This transformation consists of a one-pot sequential Sonogashira coupling (and desilylation) followed by cycloisomerization/C3-functionalization of 2-iodoanilines. Six new bonds (four C-C and two C-N) are formed in a one-pot fashion. A variety of diindolylmethanes were obtained in excellent yields (up to 94%) under mild reaction conditions and this strategy is amenable to gram scale synthesis also. The products were transformed into various synthetically useful compounds.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India.
| | | |
Collapse
|
23
|
Das S, Daniliuc CG, Studer A. Stereospecific 1,3-Aminobromination of Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2017; 56:11554-11558. [DOI: 10.1002/anie.201704092] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Saikat Das
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
24
|
Das S, Daniliuc CG, Studer A. Stereospecific 1,3-Aminobromination of Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704092] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saikat Das
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- NRW Graduate School of Chemistry; Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
25
|
Garve LKB, Jones PG, Werz DB. Ring-Opening 1-Amino-3-aminomethylation of Donor-Acceptor Cyclopropanes via 1,3-Diazepanes. Angew Chem Int Ed Engl 2017; 56:9226-9230. [DOI: 10.1002/anie.201704619] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Lennart K. B. Garve
- Technische Universität Braunschweig; Institute of Organic Chemistry; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig; Institute of Inorganic and Analytical Chemistry; Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig; Institute of Organic Chemistry; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
26
|
Garve LKB, Jones PG, Werz DB. Ringöffnende 1-Amino-3-aminomethylierung von Donor-Akzeptor-substituierten Cyclopropanen über 1,3-Diazepane. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704619] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lennart K. B. Garve
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Peter G. Jones
- Technische Universität Braunschweig; Institut für Anorganische und Analytische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Daniel B. Werz
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| |
Collapse
|
27
|
Zhu X, Hong G, Hu C, Wu S, Wang L. Scandium(III) Trifluoromethanesulfonate Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 1,1-Diphenylethanols: An Approach to Polysubstituted Olefins. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyan Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai P. R. China
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai P. R. China
| | - Chen Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai P. R. China
| | - Shengying Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai P. R. China
| |
Collapse
|
28
|
Arcadi A, Chiarini M, Del Vecchio L, Marinelli F, Michelet V. Sequential Silver‐Catalyzed Oxidative Cyclization Reactions of Unprotected 2‐Alkynylanilines to Anthranils. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
| | - Marco Chiarini
- Facoltà di Bioscienze e Tecnologie Agro‐Alimentari e Ambientali Università di Teramo Via R. Balzarini 1 64100 Teramo (Te) Italy
| | - Luana Del Vecchio
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
- PSL Research University ChimieParisTech‐CNRS Institut de Recherche de Chimie Paris 11 Rue P&M Curie 75005 Paris France
| | - Fabio Marinelli
- Dipartimento di Scienze Fisiche e Chimiche Università di L'Aquila Via Vetoio 671010 Coppito AQ Italy
| | - Véronique Michelet
- PSL Research University ChimieParisTech‐CNRS Institut de Recherche de Chimie Paris 11 Rue P&M Curie 75005 Paris France
| |
Collapse
|
29
|
Meesin J, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles by cascade annulation of 2-alkynyl-N,N-dialkylanilines. Org Biomol Chem 2017; 15:3662-3669. [DOI: 10.1039/c7ob00366h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Divergent synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles from 2-alkynyl-N,N-dialkylanilines and sulfonyl hydrazides has been described.
Collapse
Affiliation(s)
- Jatuporn Meesin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
30
|
Das S, Daniliuc CG, Studer A. Multicomponent 1,3-Bifunctionalization of Donor–Acceptor Cyclopropanes with Arenes and Nitrosoarenes. Org Lett 2016; 18:5576-5579. [DOI: 10.1021/acs.orglett.6b02815] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saikat Das
- NRW
Graduate School of Chemistry and ‡Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- NRW
Graduate School of Chemistry and ‡Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Armido Studer
- NRW
Graduate School of Chemistry and ‡Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| |
Collapse
|
31
|
Bujok R, Mąkosza M. Direct synthesis of nitroaryl acetylenes from acetylenes and nitroarenes via oxidative nucleophilic substitution of hydrogen. Chem Commun (Camb) 2016; 52:12650-12652. [PMID: 27713937 DOI: 10.1039/c6cc07475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acetylenic carbanions add to nitroarenes (dinitrobenzenes, nitropyridines, etc.) to form σH-adducts that are subsequently oxidized by DDQ according to the oxidative nucleophilic substitution of hydrogen (ONSH) pathway to give nitroaryl acetylenes.
Collapse
Affiliation(s)
- Robert Bujok
- Institute of Organic Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Mieczysław Mąkosza
- Institute of Organic Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
32
|
Han JQ, Zhang HH, Xu PF, Luo YC. Lewis Acid and (Hypo)iodite Relay Catalysis Allows a Strategy for the Synthesis of Polysubstituted Azetidines and Tetrahydroquinolines. Org Lett 2016; 18:5212-5215. [PMID: 27723357 DOI: 10.1021/acs.orglett.6b02430] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic [3 + 1]-annulation reaction between cyclopropane 1,1-diester and aromatic amine is developed based on the relay catalysis strategy. Lewis acid-catalyzed nucleophilic ring opening of cyclopropane 1,1-diester with aromatic amine and (hypo)iodite-catalyzed C-N bond formation are combined successfully in one reaction. Using this reaction, biologically important azetidines and tetrahydroquinolines can be prepared directly.
Collapse
Affiliation(s)
- Jing-Qiang Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, P. R. China
| | - Huan-Huan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, P. R. China
| |
Collapse
|
33
|
Xia Y, Lin L, Chang F, Liao Y, Liu X, Feng X. Asymmetric Ring Opening/Cyclization/Retro-Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2-Diamines for the Synthesis of Benzimidazole Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604735] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yong Xia
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Fenzhen Chang
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Yuting Liao
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
34
|
Xia Y, Lin L, Chang F, Liao Y, Liu X, Feng X. Asymmetric Ring Opening/Cyclization/Retro-Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2-Diamines for the Synthesis of Benzimidazole Derivatives. Angew Chem Int Ed Engl 2016; 55:12228-32. [DOI: 10.1002/anie.201604735] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Yong Xia
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Fenzhen Chang
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Yuting Liao
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|