1
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
2
|
Liu L. Hydride-Abstraction-Initiated Catalytic Stereoselective Intermolecular Bond-Forming Processes. Acc Chem Res 2022; 55:3537-3550. [PMID: 36384272 DOI: 10.1021/acs.accounts.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| |
Collapse
|
3
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
4
|
Oxygen-Doped Carbon Nitride for Enhanced Photocatalytic Activity in Visible-Light-Induced Decarboxylative Annulation Reactions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp
3
)−H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202208232. [DOI: 10.1002/anie.202208232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Guo
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Sijia Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mengzhen Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
6
|
Jiang C, Sha X, Ni C, Qin W, Zhu X, Wang S, Li X, Lu H. Visible-Light-Promoted Cross Dehydrogenative/Decarboxylative Coupling Cascades of Glycine Ester Derivatives and β-Keto Acids. J Org Chem 2022; 87:8744-8751. [PMID: 35708260 DOI: 10.1021/acs.joc.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced dehydrogenative/decarboxylative coupling reaction of arylglycine derivatives and β-keto acids is described. This photocatalyst- and additive-free protocol can be applied in the efficient synthesis of γ-keto glycine derivatives under ambient conditions. Further uses of this methodology and a plausible mechanism are also demonstrated.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuefei Sha
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Cheng Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Wei Qin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuejie Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
7
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Qi X, Guo Y, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp3)‐H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Haijing Xiao
- Central China Normal University Department of Chemistry CHINA
| | - Sijia Li
- Central China Normal University Department of Chemistry CHINA
| | - Yixin Luo
- Wuhan University Department of Chemistry CHINA
| | - Jiahui Bai
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Mengzhen Zhang
- Central China Normal University Department of Chemistry CHINA
| | - Xiaotian Qi
- Wuhan University Department of Chemistry CHINA
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Guozhu Zhang
- Shanghai Institute of Organic Chemistry Chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
8
|
Young HA, Proulx C. On-resin Cα-functionalization of N-arylglycinyl peptides with boronic acids. Org Biomol Chem 2022; 20:6245-6249. [PMID: 35616496 DOI: 10.1039/d2ob00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A late-stage α-C-H functionalization reaction of resin-bound, electron-rich N-aryl peptides with boronic acid nucleophiles under mild conditions is reported. We explore the impact of the N-arylglycinyl peptide structure on reactivity, and present a scope of the optimized reaction where both the peptide sequence and nature of boronic acid derivatives are varied.
Collapse
Affiliation(s)
- Hailey A Young
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
9
|
Gao PC, Wang ZX, Li BJ. Iridium-Catalyzed Regioselective Hydroalkynylation of Internal Alkenes Directed by an Oxime. Org Lett 2021; 23:9500-9504. [PMID: 34860536 DOI: 10.1021/acs.orglett.1c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here an iridium-catalyzed hydroalkynylation of allylic alcohols protected by an oxime group. Catalytic alkynylation occurs exclusively at the distal position of the alkene. This method generates γ-alkynyl alcohol oximes directly from internal alkenes and terminal alkynes. The oxime group can be readily removed to afford a free alcohol, thus providing an indirect route for the catalytic hydroalkynylation of allylic alcohols.
Collapse
Affiliation(s)
- Peng-Chao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zi-Xuan Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Liu L, Guo K, Tian Y, Yang C, Gu Q, Li Z, Ye L, Liu X. Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp
3
)−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kai‐Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chang‐Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
11
|
Liu L, Guo KX, Tian Y, Yang CJ, Gu QS, Li ZL, Ye L, Liu XY. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. Angew Chem Int Ed Engl 2021; 60:26710-26717. [PMID: 34606167 DOI: 10.1002/anie.202110233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
Collapse
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai-Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Zhang Y, Jiang W, Bao X, Qiu Y, Yuan Y, Yang C, Huo C. Photocatalyzed Reverse Polarity Oxidative Povarov Reaction of Glycine Derivatives with Maleimides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongxin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Wei Jiang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yifeng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Caixia Yang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
13
|
Synthesis of β-hydroxy-α-amino acid derivatives by the cross-dehydrogenative coupling of N-arylglycine esters with α-hydroxy ketones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wang ZH, Gao PS, Wang X, Gao JQ, Xu XT, He Z, Ma C, Mei TS. TEMPO-Enabled Electrochemical Enantioselective Oxidative Coupling of Secondary Acyclic Amines with Ketones. J Am Chem Soc 2021; 143:15599-15605. [PMID: 34533943 DOI: 10.1021/jacs.1c08671] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrochemical asymmetric coupling of secondary acyclic amines with ketones via a Shono-type oxidation has been described, affording the corresponding amino acid derivatives with good to excellent diastereoselectivity and enantioselectivity. The addition of an N-oxyl radical as a redox mediator could selectively oxidize the substrate rather than the product, although their oxidation potential difference is subtle (about 13 mV). This electrochemical transformation proceeds in the absence of stoichiometric additives, including metals, oxidants, and electrolytes, which gives it good functional group compatibility. Mechanistic studies suggest that proton-mediated racemization of the product is prevented by the reduction of protons at the cathode.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Pei-Sen Gao
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiu Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jun-Qing Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zeng He
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
15
|
|
16
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
17
|
Zhang WW, Li BJ. Iridium-catalyzed enantioselective hydroalkynylation via alkene isomerization. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Liang J, Fu Y, Bao X, Ou L, Sang T, Yuan Y, Huo C. Cyanation of glycine derivatives. Chem Commun (Camb) 2021; 57:3014-3017. [PMID: 33623936 DOI: 10.1039/d0cc08126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a catalytic oxidative C-H cyanation of glycine derivatives using a simple copper(i) catalyst with NFSI as an oxidant via a radical process to furnish α-cyano glycine derivatives, which are useful intermediates for organic synthesis. CuCl acted as both a one-electron reductant and a transition-metal catalyst in this transformation. NFSI served as a one-electron oxidant and generated a N-centered radical as a H-abstractor. The reaction displayed broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Jia Liang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu D, Cui J, Yang S, Gong Y. Iron-Catalyzed Cyanoalkylation of Glycine Derivatives Promoted by Pyridine-Oxazoline Ligands. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Jiajia Cui
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Sen Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Wang J, Su Y, Quan Z, Li J, Yang J, Yuan Y, Huo C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem Commun (Camb) 2021; 57:1959-1962. [DOI: 10.1039/d0cc07688k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated aerobic α-alkylation reaction of glycine derivatives with alkyl boronic acids has been established in the presence of a Ru/Cu catalyst system, giving the desired radical coupling products efficiently.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jie Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
21
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
22
|
Xu H, Nazli A, Zou C, Wang ZP, He Y. Bench-stable imine surrogates for the one-pot and catalytic asymmetric synthesis of α-amino esters/ketones. Chem Commun (Camb) 2020; 56:14243-14246. [PMID: 33118565 DOI: 10.1039/d0cc06055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N,O-Bis(tert-butoxycarbonyl)hydroxylamines are readily accessible as imine surrogates, which are bench stable and could quantitatively generate the corresponding imines for in situ applications. An unpresented catalytic asymmetric method for the synthesis of α-amino esters and ketones from novel imine surrogates, N,O-bis(tert-butoxycarbonyl)hydroxylamines, as well as its preliminary mechanistic studies are reported. A variety of optically enriched products were obtained in excellent yields and enantioselectivities (up to 99% yield and >99% ee).
Collapse
Affiliation(s)
- Huacheng Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Zhi-Peng Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
23
|
Chan JZ, Yesilcimen A, Cao M, Zhang Y, Zhang B, Wasa M. Direct Conversion of N-Alkylamines to N-Propargylamines through C-H Activation Promoted by Lewis Acid/Organocopper Catalysis: Application to Late-Stage Functionalization of Bioactive Molecules. J Am Chem Soc 2020; 142:16493-16505. [PMID: 32830966 PMCID: PMC8048775 DOI: 10.1021/jacs.0c08599] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient catalytic method to convert an α-C-H bond of N-alkylamines into an α-C-alkynyl bond was developed. In the past, such transformations were carried out under oxidative conditions, and the enantioselective variants were confined to tetrahydroisoquinoline derivatives. Here, we disclose a method for the union of N-alkylamines and trimethylsilyl alkynes, without the presence of an external oxidant and promoted through cooperative actions of two Lewis acids, B(C6F5)3 and a Cu-based complex. A variety of propargylamines can be synthesized in high diastereo- and enantioselectivity. The utility of the approach is demonstrated by the late-stage site-selective modification of bioactive amines. Kinetic investigations that shed light on various mechanistic nuances of the catalytic process are presented.
Collapse
Affiliation(s)
| | | | - Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuyang Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bochao Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
24
|
Xie Z, Li F, Niu L, Li H, Zheng J, Han R, Ju Z, Li S, Li D. CuBr/NHPI co-catalyzed aerobic oxidative [3 + 2] cycloaddition-aromatization to access 5,6-dihydro-pyrrolo[2,1-a]isoquinolines. Org Biomol Chem 2020; 18:6889-6898. [PMID: 32852493 DOI: 10.1039/d0ob01403f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and enviromentally friendly CuBr/NHPI co-catalyzed aerobic oxidative [3 + 2] cycloaddition-aromatization cascade was realized with N-substituted tetrahydroisoquinolines and electron-deficient olefins. Under the mild conditions, the reaction proceeded smoothly and displayed excellent functional group tolerance, affording 5,6-dihydro-pyrrolo[2,1-a]isoquinolines in good to high yields. This protocol exhibits a broad substrate scope to both N-alkyl tetrahydroisoquinolines and dipolarophile substrates.
Collapse
Affiliation(s)
- Zhiyu Xie
- College of Chemical and Materials Engineering, Xuchang University, No. 88, Bayi Road, Xuchang, Henan 461000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|
26
|
Yan M, Ma R, Chen R, Wang L, Wang Z, Ma Y. Synthesis of 1,2-dihydro-1,3,5-triazine derivatives via Cu(II)-catalyzed C(sp 3)-H activation of N, N-dimethylethanolamine with amidines. Chem Commun (Camb) 2020; 56:10946-10949. [PMID: 32940285 DOI: 10.1039/d0cc03820b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Dihydro-1,3,5-triazines and symmetrical 1,3,5-triazines were obtained in up to 81% yields from amidines and N,N-dimethylethanolamine catalyzed by CuCl2. The reaction involves three C-N bond formations during the oxidative annulation process and the mechanism was proposed. This efficient synthesis of 1,2-dihydro-1,3,5-triazines was developed for the first time.
Collapse
Affiliation(s)
- Min Yan
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| |
Collapse
|
27
|
Choi S, Oh H, Sim J, Yu E, Shin S, Park CM. Metal-Free Synthesis of Indolopyrans and 2,3-Dihydrofurans Based on Tandem Oxidative Cycloaddition. Org Lett 2020; 22:5528-5534. [PMID: 32628496 DOI: 10.1021/acs.orglett.0c01896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of versatile scaffold indolopyrans based on C-C radical-radical cross-coupling under metal-free conditions is described. The reaction involving single electron transfer between coupling partners followed by cage collapse allows highly selective cross-coupling while employing only equimolar amounts of coupling partners. Moreover, the mechanistic manifold was expanded for the functionalization of enamines to give the stereoselective synthesis of 2,3-dihydrofurans. This iodine-mediated oxidative coupling features mild conditions and fast reaction kinetics.
Collapse
Affiliation(s)
- Subin Choi
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Hyeonji Oh
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Jeongwoo Sim
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Seunghoon Shin
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| |
Collapse
|
28
|
He X, Wu Y, Zhou T, Zuo Y, Xie M, Li R, Duan J, Shang Y. Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1781185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| |
Collapse
|
29
|
Gao P, Weng X, Wang Z, Zheng C, Sun B, Chen Z, You S, Mei T. Cu
II
/TEMPO‐Catalyzed Enantioselective C(sp
3
)–H Alkynylation of Tertiary Cyclic Amines through Shono‐Type Oxidation. Angew Chem Int Ed Engl 2020; 59:15254-15259. [DOI: 10.1002/anie.202005099] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Pei‐Sen Gao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Xin‐Jun Weng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhen‐Hua Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhi‐Hao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
30
|
Gao P, Weng X, Wang Z, Zheng C, Sun B, Chen Z, You S, Mei T. Cu
II
/TEMPO‐Catalyzed Enantioselective C(sp
3
)–H Alkynylation of Tertiary Cyclic Amines through Shono‐Type Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei‐Sen Gao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Xin‐Jun Weng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhen‐Hua Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhi‐Hao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
31
|
Abstract
The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C–X (X = N, O, P, S, B, or Si) coupling reactions can now be performed directly between two C–H bonds or a C–H and an X–H bond, simply by adding catalytic amounts of a metal salt to a mixture of the two and an oxidant to accept the two hydrogen atoms released. Chiral organocatalysts or chiral ligands have been joined to promote enantioselective processes, resulting in the development of efficient reaction cascades that provide products in high yields and high levels of asymmetric induction through cooperative catalysis. In recent years, photochemical oxidation and electrochemistry have widened even more the scope of cross-dehydrogenative coupling (CDC). In this review, we summarized the recent literature in this subject, hoping that it will inspire many new synthetic strategies.
Collapse
|
32
|
Yang X, Xie Z, Li Y, Zhang Y. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis. Chem Sci 2020; 11:4741-4746. [PMID: 34122929 PMCID: PMC8159221 DOI: 10.1039/d0sc00683a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes, which provides an efficient approach for the rapid synthesis of enantiopure unnatural α-alkyl α-amino acid derivatives in good yield with excellent diastereo- (up to >99 : 1) and enantioselectivities (up to 97% ee). This process includes the direct photoinduced oxidation of glycine derivatives to an imine intermediate, followed by the asymmetric Mannich-type reaction with an enamine intermediate generated in situ from a ketone or aldehyde and a chiral secondary amine organocatalyst. This mild method allows the direct formation of a C–C bond with simultaneous installation of two new stereocenters without wasteful removal of functional groups. A visible-light-induced enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes is achieved.![]()
Collapse
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
33
|
Zhang Y, Li S, Zhu Y, Yang X, Zhou H, Li Y. Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with β-Naphthols: Access to 1,3-Benzoxazines. J Org Chem 2020; 85:6261-6270. [DOI: 10.1021/acs.joc.9b01440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Huang Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
34
|
Yang X, Zhu Y, Xie Z, Li Y, Zhang Y. Visible-Light-Induced Charge Transfer Enables Csp3–H Functionalization of Glycine Derivatives: Access to 1,3-Oxazolidines. Org Lett 2020; 22:1638-1643. [DOI: 10.1021/acs.orglett.0c00234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Xue H, Guo M, Wang C, Shen Y, Qi R, Wu Y, Xu Z, Chang M. Photo-induced preparation of unnatural α-amino acids: synthesis and characterization of novel Leu5-enkephalin analogues. Org Chem Front 2020. [DOI: 10.1039/d0qo00696c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
2.6-Fold more long-lasting compared to Leu5-enkephalin.
Collapse
Affiliation(s)
- Hongxiang Xue
- Institute of Biochemistry and Molecular Biology
- School of Life Sciences
- Lanzhou University
- Lanzhou
- China
| | - Mengzhun Guo
- Institute of Drug Design & Synthesis
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Chao Wang
- Institute of Drug Design & Synthesis
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Yuxuan Shen
- Institute of Biochemistry and Molecular Biology
- School of Life Sciences
- Lanzhou University
- Lanzhou
- China
| | - Rupeng Qi
- Institute of Drug Design & Synthesis
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Yifei Wu
- Institute of Biochemistry and Molecular Biology
- School of Life Sciences
- Lanzhou University
- Lanzhou
- China
| | - Zhaoqing Xu
- Institute of Drug Design & Synthesis
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Min Chang
- Institute of Biochemistry and Molecular Biology
- School of Life Sciences
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
36
|
Wang J, Li L, Guo Y, Li S, Wang S, Li Y, Zhang Y. Visible-light-enabled aerobic oxidative C sp3-H functionalization of glycine derivatives using an organic photocatalyst: access to substituted quinoline-2-carboxylates. Org Biomol Chem 2020; 18:8179-8185. [PMID: 33026031 DOI: 10.1039/d0ob01837f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical visible-light-induced aerobic oxidative dehydrogenative coupling reaction of glycine derivatives with olefins has been developed to efficiently synthesize quinoline-2-carboxylates. This metal-free process proceeds smoothly under mild conditions and exhibits good tolerance of functional groups. Given the low cost of the catalyst and feedstock materials, the mild reaction conditions and the absence of hazardous byproducts, this protocol should find broad applications in the synthesis of quinoline-2-carboxylate derivatives.
Collapse
Affiliation(s)
- Jingxin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Liqi Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
37
|
Young HA, Guthrie QAE, Proulx C. N-Arylation of Amino Acid Esters to Expand Side Chain Diversity in Ketoxime Peptide Ligations. J Org Chem 2019; 85:1748-1755. [PMID: 31793778 DOI: 10.1021/acs.joc.9b02810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Palladium-catalyzed N-arylations of amino acid tert-butyl esters using 4-bromo-N,N-dimethylaniline as a coupling partner are reported. The resulting N-aryl amino acid esters are suitable building blocks for the synthesis of electron-rich N-aryl peptides, which undergo oxidative couplings to aminooxy groups to afford ketoxime peptides under mild conditions. N-aryl amino acid tert-butyl esters possessing unnatural side chains were also accessed via glycine Schiff base alkylation, further increasing the scope of Cα-substitution in ketoxime peptides.
Collapse
Affiliation(s)
- Hailey A Young
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Quibria A E Guthrie
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Caroline Proulx
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
38
|
Zhang ZH, Dong XY, Du XY, Gu QS, Li ZL, Liu XY. Copper-catalyzed enantioselective Sonogashira-type oxidative cross-coupling of unactivated C(sp 3)-H bonds with alkynes. Nat Commun 2019; 10:5689. [PMID: 31831750 PMCID: PMC6908613 DOI: 10.1038/s41467-019-13705-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
Transition metal-catalyzed enantioselective Sonogashira-type oxidative C(sp3)-C(sp) coupling of unactivated C(sp3)-H bonds with terminal alkynes has remained a prominent challenge. The difficulties mainly stem from the regiocontrol in unactivated C(sp3)-H bond functionalization and the inhibition of readily occurring Glaser homocoupling of terminal alkynes. Here, we report a copper/chiral cinchona alkaloid-based N,N,P-ligand catalyst for asymmetric oxidative cross-coupling of unactivated C(sp3)-H bonds with terminal alkynes in a highly regio-, chemo-, and enantioselective manner. The use of N-fluoroamide as a mild oxidant is essential to site-selectively generate alkyl radical species while efficiently avoiding Glaser homocoupling. This reaction accommodates a range of (hetero)aryl and alkyl alkynes; (hetero)benzylic and propargylic C(sp3)-H bonds are all applicable. This process allows expedient access to chiral alkynyl amides/aldehydes. More importantly, it also provides a versatile tool for the construction of chiral C(sp3)-C(sp), C(sp3)-C(sp2), and C(sp3)-C(sp3) bonds when allied with follow-up transformations.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.,Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan-Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
39
|
Guthrie QAE, Young HA, Proulx C. Ketoxime peptide ligations: oxidative couplings of alkoxyamines to N-aryl peptides. Chem Sci 2019; 10:9506-9512. [PMID: 32110307 PMCID: PMC7017874 DOI: 10.1039/c9sc04028e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Chemoselective ligation methods that preserve or introduce side chain diversity are critical for chemical synthesis of peptides and proteins. Starting from ketone substrates instead of aldehydes in oxime ligation reactions would allow substitution at the site of ligation; however, synthetic challenges to readily access ketone derivatives from common amino acid building blocks have precluded the widespread use of ketoxime peptide ligation reactions thus far. Moreover, ketones are typically much slower to react in condensation reactions compared to aldehydes. Here, one-pot catalyst-free oxidative couplings of α-substituted N-aryl peptides with alkoxyamines provide access to oxime linkages with diverse side chains. Electron-rich N-(p-Me2N-phenyl)-amino acids possessing substituents at the α-carbon were found to be uniquely capable of undergoing site-selective α-C-H oxidations in situ under an O2 atmosphere at neutral pH. Comparative studies with N-arylglycinyl peptides revealed that substitution at the α-carbon caused notable changes in reactivity, with greater sensitivity to solvent and buffer salt composition.
Collapse
Affiliation(s)
- Quibria A E Guthrie
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| | - Hailey A Young
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| | - Caroline Proulx
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695-8204 , USA .
| |
Collapse
|
40
|
Alonso F, Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D. Synthesis of Propargylamines by Cross-Dehydrogenative Coupling. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190916104701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Propargylamines are versatile compounds for heterocyclic synthesis, some of which are current drugs prescribed to treat patients with Parkinson’s disease. There are different methods to synthesize propargylamines, however, modern chemistry has moved progressively to rely on new strategies that meet the principles of Green Chemistry. In this context, propargylamines are readily accessible by the cross-dehydrogenative coupling (CDC) of two C-H bonds (i.e., NCsp3-H and Csp-H bonds); surely, CDC can be considered the most atom-economic and efficient manner to form C-C bonds. The aim of this review is to provide a comprehensive survey on the synthesis of propargylamines by the CDC of amines and terminal alkynes from three fronts: (a) transition-metal homogeneous catalysis, (b) transition-metal heterogeneous catalysis and (c) photoredox catalysis. A section dealing with the asymmetric synthesis of chiral propargylamines is also included. Special attention is also devoted to the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Francisco Alonso
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Irene Bosque
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Rafael Chinchilla
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Carlos Gonzalez-Gomez
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - David Guijarro
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
41
|
Li H, Liang J, Huo C. Oxidative Dehydrogenative [3+3] Annulation of Benzylhydrazines with Aziridines Leading to Tetrahydrotriazines. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haitao Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Jia Liang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
42
|
Jiang W, Wan S, Su Y, Huo C. Double-Oxidative Dehydrogenative [4+2]-Cyclization/Dehydrogenation/Oxygenation Tandem Reaction of N-Arylglycine Derivatives with Cumenes. J Org Chem 2019; 84:8232-8241. [PMID: 31135157 DOI: 10.1021/acs.joc.9b00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Double-oxidative dehydrogenative (DOD) cyclization is one of the most straightforward strategies for the synthesis of cyclic compounds. A novel approach to substituted 3,4-dihydroquinoline-3-one derivatives via a Cu(II)/DDQ/O2 system-catalyzed DOD [4+2]-cyclization/dehydrogenation/oxygenation cascade reaction of N-arylglycine derivatives, cumenes, and O2 has been developed.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou , Gansu 730070 , China
| | - Shuocheng Wan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou , Gansu 730070 , China
| | - Yingpeng Su
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou , Gansu 730070 , China
| | - Congde Huo
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou , Gansu 730070 , China
| |
Collapse
|
43
|
Feng G, Sun C, Xin X, Wan R, Liu L. Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Wang Z, Mao Y, Guan H, Cao M, Hua J, Feng L, Liu L. Direct oxidative C(sp3) H cyanation of secondary benzylic ethers. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Chandrasekar S, Sangeetha S, Sekar G. Synthesis of 1,3‐Disubstituted Imidazo[1,5‐
a
]pyridines through Oxidative C‐N Bond Formation from Aryl‐2‐pyridylmethanols and Their Fluorescent Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201901440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvaraj Chandrasekar
- Department of ChemistryIndian Institute of Technology Madras Chennai-600036, Tamil Nadu India
| | - Subramani Sangeetha
- Department of ChemistryIndian Institute of Technology Madras Chennai-600036, Tamil Nadu India
| | - Govindasamy Sekar
- Department of ChemistryIndian Institute of Technology Madras Chennai-600036, Tamil Nadu India
| |
Collapse
|
46
|
Wu R, Li J, Wang Y, Quan Z, Su Y, Huo C. Copper‐Catalyzed Aerobic Oxidative Dehydrogenative Ring‐Opening Reaction of Glycine Esters with α′‐Angelicalactone: Approach to Construct α‐Amino‐γ‐Ketopimelates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Yajun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| |
Collapse
|
47
|
|
48
|
Ramana DV, Sudheer Kumar K, Srujana E, Chandrasekharam M. Copper‐Catalyzed Double Friedel‐Crafts Alkylation of Tetrahydroquinolines Under Aqueous Conditions: Efficient Synthesis of gem‐Diarylacetic Esters. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Karu Sudheer Kumar
- PFM Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- CSIR‐Indian Institute of Chemical Technology Academy of Scientific and Innovative Research Hyderabad India
| | | | - Malapaka Chandrasekharam
- PFM Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- CSIR‐Indian Institute of Chemical Technology Academy of Scientific and Innovative Research Hyderabad India
| |
Collapse
|
49
|
Peng X, Wang HH, Cao F, Zhang HH, Lu YM, Hu XL, Tan W, Wang Z. TBHP promoted demethylation of α-amino carbonyl compounds: a concise approach to substituted γ-lactams. Org Chem Front 2019. [DOI: 10.1039/c9qo00103d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel tert-butyl hydroperoxide (TBHP) promoted CH2-extrusion reaction of α-amino carbonyl compounds has been developed, which is driven by a demethylenation process to give various ring contraction products γ-lactams under radical conditions.
Collapse
Affiliation(s)
- Xue Peng
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | | | - Ying-Mei Lu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiao-Ling Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Wen Tan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Zhen Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|
50
|
Xin X, Pan X, Meng Z, Liu X, Liu L. Catalytic enantioselective cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with aldehydes. Org Chem Front 2019. [DOI: 10.1039/c9qo00123a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first catalytic asymmetric cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans and aldehydes with excellent enantioselectivity is described.
Collapse
Affiliation(s)
- Xiaodong Xin
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Xinhui Pan
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Zhilin Meng
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Xigong Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
- School of Pharmaceutical Sciences
| |
Collapse
|