1
|
Sato Y, Takaku Y, Nakano T, Akamatsu K, Inamura D, Nishizawa S. Synthetic DNA binders for fluorescent sensing of thymine glycol-containing DNA duplexes and inhibition of endonuclease activity. Chem Commun (Camb) 2023; 59:6088-6091. [PMID: 37128964 DOI: 10.1039/d3cc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dimethyllumazine (DML)-thiazole orange (TO) conjugates were developed for fluorescence sensing of thymine glycol (Tg)-containing DNAs based on the selective recognition of the A nucleobase opposite the Tg residue. Additionally, this conjugate has demonstrated an inhibitory activity towards endonuclease III, a DNA repair enzyme, through its competitive binding to Tg-containing DNAs.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Toshiaki Nakano
- DNA damage chemistry research group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, 619-0215, Japan.
| | - Ken Akamatsu
- DNA damage chemistry research group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, 619-0215, Japan.
| | - Dai Inamura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
2
|
Hisama K, Orimoto Y, Pomogaeva A, Nakatani K, Aoki Y. Ab initio multi-level layered elongation method and its application to local interaction analysis between DNA bulge and ligand molecules. J Chem Phys 2021; 155:044110. [PMID: 34340364 DOI: 10.1063/5.0050096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A multi-level layered elongation method was developed for efficiently analyzing the electronic states of local structures in large bio/nano-systems at the full ab initio level of theory. The original elongation method developed during the last three decades in our group has focused on the system in one direction from one terminal to the other terminal to sequentially construct the electronic states of a polymer, called a theoretical synthesis of polymers. In this study, an important region termed the central (C) part is targeted in a large polymer and the remainder are terminal (T) parts. The electronic structures along with polymer elongation are calculated repeatedly from both end T parts to the C central part at the same time. The important C part is treated with large basis sets (high level) and the other regions are treated with small basis sets (low level) in the ab initio theoretical framework. The electronic structures besides the C part can be reused for other systems with different structures at the C part, which renders the method computationally efficient. This multi-level layered elongation method was applied to the investigation on DNA single bulge recognition of small molecules (ligands). The reliability and validity of our approach were examined in comparison with the results obtained by direct calculations using a conventional quantum chemical method for the entire system. Furthermore, stabilization energies by the formation of the complex of bulge DNA and a ligand were estimated with basis set superposition error corrections incorporated into the elongation method.
Collapse
Affiliation(s)
- Keisuke Hisama
- Department of Interdisciplinary Engineering Sciences, Chemistry and Materials Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuuichi Orimoto
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Anna Pomogaeva
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuriko Aoki
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| |
Collapse
|
3
|
Chloro-Substituted Naphthyridine Derivative and Its Conjugate with Thiazole Orange for Highly Selective Fluorescence Sensing of an Orphan Cytosine in the AP Site-Containing Duplexes. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescent probes with the binding selectivity to specific structures in DNAs or RNAs have gained much attention as useful tools for the study of nucleic acid functions. Here, chloro-substituted 2-amino-5,7-dimethyl-1,8-naphthyridine (ClNaph) was developed as a strong and highly selective binder for target orphan cytosine opposite an abasic (AP) site in the DNA duplexes. ClNaph was then conjugated with thiazole orange (TO) via an alkyl spacer (ClNaph–TO) to design a light-up probe for the detection of cytosine-related mutations in target DNA. In addition, we found the useful binding and fluorescence signaling of the ClNaph–TO conjugate to target C in AP site-containing DNA/RNA hybrid duplexes with a view toward sequence analysis of microRNAs.
Collapse
|
4
|
Mbarek A, Moussa G, Chain JL. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019; 24:molecules24091803. [PMID: 31075983 PMCID: PMC6539068 DOI: 10.3390/molecules24091803] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.
Collapse
Affiliation(s)
- Amira Mbarek
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Ghina Moussa
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
- Univ. Bordeaux, ARNA Laboratory, F-33016 Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33016 Bordeaux, France.
| |
Collapse
|
5
|
Zhou W, Yu Z, Ma G, Jin T, Li Y, Fan L, Li X. Thioflavin T specifically brightening “Guanine Island” in duplex-DNA: a novel fluorescent probe for single-nucleotide mutation. Analyst 2019; 144:2284-2290. [DOI: 10.1039/c8an02430h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we found that Thioflavin T (ThT) could specifically bind with a G-GGG unit (named as “Guanine Island”) in double stranded DNA (ds-DNA).
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Ze Yu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Ge Ma
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Tian Jin
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
6
|
Galland M, Riobé F, Ouyang J, Saleh N, Pointillart F, Dorcet V, Le Guennic B, Cador O, Crassous J, Andraud C, Monnereau C, Maury O. Helicenic Complexes of Lanthanides: Influence of the f-Element on the Intersystem Crossing Efficiency and Competition between Luminescence and Oxygen Sensitization. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Margaux Galland
- Université Lyon; ENS de Lyon; CNRS UMR 5182; Laboratoire de Chimie; Université Claude Bernard Lyon 1 69342 Lyon France
| | - François Riobé
- Université Lyon; ENS de Lyon; CNRS UMR 5182; Laboratoire de Chimie; Université Claude Bernard Lyon 1 69342 Lyon France
| | - Jiangkun Ouyang
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Nidal Saleh
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Fabrice Pointillart
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Boris Le Guennic
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Olivier Cador
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Jeanne Crassous
- Univ Rennes; CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; 35000 Rennes France
| | - Chantal Andraud
- Université Lyon; ENS de Lyon; CNRS UMR 5182; Laboratoire de Chimie; Université Claude Bernard Lyon 1 69342 Lyon France
| | - Cyrille Monnereau
- Université Lyon; ENS de Lyon; CNRS UMR 5182; Laboratoire de Chimie; Université Claude Bernard Lyon 1 69342 Lyon France
| | - Olivier Maury
- Université Lyon; ENS de Lyon; CNRS UMR 5182; Laboratoire de Chimie; Université Claude Bernard Lyon 1 69342 Lyon France
| |
Collapse
|
7
|
Lin F, Zhou Y, Li Q, Zhou X, Shao Y, Habermeyer B, Wang H, Shi X, Xu Z. Prototropically Allosteric Probe for Superbly Selective DNA Analysis. Anal Chem 2017; 89:9299-9306. [DOI: 10.1021/acs.analchem.7b02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fan Lin
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yufeng Zhou
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qiusha Li
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | | | - Hui Wang
- Chinese
Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy
Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinghua Shi
- Chinese
Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy
Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhiai Xu
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Takada T, Umakoshi Y, Nakamura M, Yamana K. A Luminescent Perylenediimide as a Binding Ligand for Pyrimidine/Pyrimidine Mismatches Within a DNA Duplex. ChemistrySelect 2017. [DOI: 10.1002/slct.201701310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Yu Umakoshi
- Department of Applied Chemistry, Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Mitsunobu Nakamura
- Department of Applied Chemistry, Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry, Graduate School of Engineering; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
9
|
Sarkar HS, Das S, Mandal D, Uddin MR, Mandal S, Sahoo P. “Turn-on” fluorescence sensing of cytosine: development of a chemosensor for quantification of cytosine in human cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra11096k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pyrene appended 5-hydroxyisophthalic acid derivative (PIA) has been developed and characterized for selective detection and quantification of cytosine in different human cancer cells.
Collapse
Affiliation(s)
| | - Sujoy Das
- Department of Chemistry
- Visva-Bharati University
- India
| | - Debasish Mandal
- Institute of Chemistry
- The Hebrew University of Jerusalem
- 91904 Jerusalem
- Israel
| | - Md Raihan Uddin
- Department of Microbiology
- University of Calcutta
- Kolkata-700019
- India
| | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata-700019
- India
| | | |
Collapse
|