1
|
Tan DH, Das A, Huang V, Schoch TD, Mohammed AL, Lipshultz JM. Pyridoxal-Inspired Photo-Decarboxylase Catalysis: Photochemical Decarboxylation of Unprotected Amino Acids. Angew Chem Int Ed Engl 2025; 64:e202424843. [PMID: 39954015 PMCID: PMC12009495 DOI: 10.1002/anie.202424843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
A photochemical organocatalytic method for the protodecarboxylation of unprotected amino acids is reported. Inspired by pyridoxal 5'-phosphate-dependent decarboxylase enzymes, the catalytic activation of amino acid substrates by 3-hydroxyisonicotinaldehyde enables a photochemical decarboxylation event, which can be leveraged in combination with a thiol co-catalyst. The necessary and sufficient structural features of the pyridoxal-like framework for photoactivity are determined using ultraviolet-visible absorption spectroscopy. A broad scope of unprotected amino acids can be decarboxylated in this system, with selectivity between multiple carboxylates realized on the possible basis of hyperconjugation. The ability to engage simple amino acids in decarboxylative functionalization at ambient conditions using a pyridoxal-mimicking organocatalyst enables new possibilities for the translation of biogenic amino acids into medicinally valuable amines.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Agniva Das
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Vincent Huang
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Timothy D Schoch
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abubakar Lawal Mohammed
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Jeffrey M Lipshultz
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Abstract
ConspectusOne of the fundamental goals of chemists is to develop highly efficient methods for producing optically active compounds, given their wide range of applications in chemistry, pharmaceutical industry, chemical biology, and material science. Biomimetic asymmetric catalysis, which imitates the structures and functions of enzymes, has emerged as an extremely attractive strategy for producing chiral compounds. This field has drawn tremendous research interest and has led to various protocols for constructing complex molecular scaffolds. The Vitamin B6 family, including pyridoxal, pyridoxamine, pyridoxine, and the corresponding phosphorylated derivatives, serves as the cofactors to catalyze more than 200 enzymatic functions, accounting for ∼4% of all enzyme activities. Although significant progress has been made in simulating the biological roles of vitamin B6 during the past several decades, its extraordinary catalytic power has not yet been successfully applied into asymmetric synthesis. In recent years, our group has been devoted to developing vitamin B6-based biomimetic asymmetric catalysis using chiral pyridoxals/pyridoxamines as catalysts. We are particularly interested in mimicking the processes of enzymatic transamination and biological aldol reaction of glycine, respectively, developing asymmetric biomimetic transamination and carbonyl catalysis enabled α-C-H transformation of primary amines. Using a chiral α,α-diarylprolinol-derived pyridoxal as the catalyst, we reported the first chiral pyridoxal catalyzed asymmetric transamination of α-keto acids in 2015. A significant breakthrough in biomimetic transamination was achieved by using an axially chiral biaryl pyridoxamine catalyst that bears a lateral amine side arm. The amine side arm acts as an intramolecular base, accelerating the transamination and proving highly effective for transamination of α-keto acids and α-keto amides. In addition, we discovered the catalytic power of chiral pyridoxals as carbonyl catalysts for asymmetric biomimetic Mannich/aldol reactions of glycinates. These chiral pyridoxals also enabled more α-C-H conversions of glycinates, such as asymmetric 1,4-addition toward α,β-unsaturated esters and asymmetric α-allylation with Morita-Baylis-Hillman acetates. Moreover, carbonyl catalysis can be further applied to highly challenging primary amines with inert α-C-H bonds, such as propargylamines and benzylamines, which represents a powerful strategy for direct asymmetric α-C-H functionalization of various primary amines without protection of the NH2 group. These biomimetic/bioinspired transformations provide efficient new protocols for the synthesis of chiral amines. Herein, we summarize our recent efforts on the development of the vitamin B6-based biomimetic asymmetric catalysis.
Collapse
Affiliation(s)
- Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
3
|
Cai W, Cai D, Liang H, Ren X, Zhao B. Asymmetric Biomimetic Transamination of Trifluoromethyl Ketones. J Org Chem 2023. [PMID: 36696680 DOI: 10.1021/acs.joc.2c02329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the presence of chiral pyridoxamine 4b as the catalyst and 2,2-diphenylglycine (3) as the amine source, asymmetric biomimetic transamination of trifluoromethyl ketones produces optically active α-trifluoromethyl amines 6 in 81-98% yields with 88-95% ee's under mild conditions.
Collapse
Affiliation(s)
- Weiqi Cai
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Dongchen Cai
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Hanyu Liang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Han LL, Zhang QY, Li X, Qiao Y, Lan Y, Wei D. The chiral pyridoxal-catalyzed biomimetic Mannich reaction: the mechanism and origin of stereoselectivity. Org Chem Front 2022. [DOI: 10.1039/d2qo00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic organocatalyst with a pyridoxal-like structure is one of the most successful examples of catalyzing organic reactions under mild conditions in an asymmetric synthesis field.
Collapse
Affiliation(s)
- Li-Li Han
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Qiao-Yu Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Xue Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
5
|
Niu R, He Y, Lin JB. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Org Biomol Chem 2021; 20:37-54. [PMID: 34854454 DOI: 10.1039/d1ob02038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chiral carboxylic acids bearing an α-stereogenic center constitute the backbone of many natural products and therapeutic reagents as well as privileged chiral ligands and catalysts. Hence, it is not surprising that a large number of elegant catalytic asymmetric strategies have been developed toward the efficient synthesis of α-chiral carboxylic acids, such as α-hydroxy acids and α-amino acids. In this review, the recent advances in asymmetric synthesis of α-stereogenic free carboxylic acids via organocatalysis and transition metal catalysis are summarized (mainly from 2010 to 2020). The content is organized by the reaction type of the carboxyl source involved, including asymmetric functionalization of substituted carboxylic acids, cyclic anhydrides, α-keto acids, substituted α,β-unsaturated acids and so on. We hope that this review will motivate further interest in catalytic asymmetric synthesis of chiral α-substituted carboxylic acids.
Collapse
Affiliation(s)
- Rui Niu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yi He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
6
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
7
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:20166-20172. [PMID: 34139067 DOI: 10.1002/anie.202104031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Indexed: 01/26/2023]
Abstract
The direct asymmetric aldol reaction of glycinates represents an intriguing and straightforward strategy to make biologically significant chiral β-hydroxy-α-amino-acid derivatives. But it is not easy to realize the transformation due to the disruption of the reactive NH2 group of glycinates. Inspired by the enzymatic aldol reaction of glycine, we successfully developed an asymmetric aldol reaction of glycinate 5 and trifluoromethyl ketones 4 with 0.1-0.0033 mol % of chiral N-methyl pyridoxal 7 a as the catalyst, producing chiral β-trifluoromethyl-β-hydroxy-α-amino-acid esters 6 in 55-82 % yields (for the syn-diastereomers) with up to >20:1 dr and 99 % ee under very mild conditions. The reaction proceeds via a catalytic cycle similar to the enzymatic aldol reaction of glycine. Pyridoxal catalyst 7 a activates both reactants at the same time and brings them together in a specific spatial orientation, accounting for the high efficiency as well as excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
8
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:10588-10592. [PMID: 33554429 DOI: 10.1002/anie.202017306] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Direct α-functionalization of NH2 -free glycinates with relatively weak electrophiles such as α,β-unsaturated esters still remains a big challenge in organic synthesis. With chiral pyridoxal 5 d as a carbonyl catalyst, direct asymmetric conjugated addition at the α-C of glycinate 1 a with α,β-unsaturated esters 2 has been successfully realized, to produce various chiral pyroglutamic acid esters 4 in 14-96 % yields with 81-97 % ee's after in situ lactamization. The trans and cis diastereomers can be obtained at the same time by chromatography and both of them can be easily converted into chiral 4-substituted pyrrolidin-2-ones such as Alzheimer's drug Rolipram (11) with the same absolute configuration via tert-butyl group removal and subsequent Barton decarboxylation.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
9
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
10
|
Yuan Z, Liao J, Jiang H, Cao P, Li Y. Aldehyde catalysis - from simple aldehydes to artificial enzymes. RSC Adv 2020; 10:35433-35448. [PMID: 35515689 PMCID: PMC9056934 DOI: 10.1039/d0ra06651f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Chemists have been learning and mimicking enzymatic catalysis in various aspects of organic synthesis. One of the major goals is to develop versatile catalysts that inherit the high catalytic efficiency of enzymatic processes, while being effective for a broad scope of substrates. In this field, the study of aldehyde catalysts has achieved significant progress. This review summarizes the application of aldehydes as sustainable and effective catalysts in different reactions. The fields, in which the aldehydes successfully mimic enzymatic systems, include light energy absorption/transfer, intramolecularity introduction through tether formation, metal binding for activation/orientation and substrate activation via aldimine formation. Enantioselective aldehyde catalysis has been achieved with the development of chiral aldehyde catalysts. Direct simplification of aldehyde-dependent enzymes has also been investigated for the synthesis of noncanonical chiral amino acids. Further development in aldehyde catalysis is expected, which might also promote exploration in fields related to prebiotic chemistry, early enzyme evolution, etc.
Collapse
Affiliation(s)
- Zeqin Yuan
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
| | - Jun Liao
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
| | - Hao Jiang
- Undisclosed Pharmaceutical Company Copenhagen Denmark
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
| |
Collapse
|
11
|
Yin Q, Shi Y, Wang J, Zhang X. Direct catalytic asymmetric synthesis of α-chiral primary amines. Chem Soc Rev 2020; 49:6141-6153. [PMID: 32666962 DOI: 10.1039/c9cs00921c] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Chiral primary amines are one among the most valuable and versatile building blocks for the synthesis of numerous amine-containing pharmaceuticals and natural compounds. They also serve as chiral ligands or organo-catalysts for asymmetric catalysis. However, most of the existing chemocatalytic methods toward enantiopure primary amines rely on multistep manipulations on N-substituted substrates, which are not ideally atom-economical and cost-effective. Among the catalytic methods including the asymmetric transformations of the pre-prepared or in situ formed NH imines, biomimetic chemocatalysis inspired by enzymatic transaminations has recently emerged as an appealing and straightforward method to access chiral primary amines. This tutorial review highlights the state-of-the-art catalytic methods for the direct asymmetric synthesis of α-chiral primary amines and demonstrates their utility in the construction of molecular complexities, which may attract extensive attention and inspire applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Qin Yin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | | | | | | |
Collapse
|
12
|
Hu X, Hu X. Ir‐catalyzed Asymmetric Hydrogenation of α‐Imino Esters with Chiral Ferrocenylphosphine‐Phosphoramidite Ligands. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Hu Hu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Ping Hu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
| |
Collapse
|
13
|
Wang Q, Gu Q, You SL. Enantioselective Carbonyl Catalysis Enabled by Chiral Aldehydes. Angew Chem Int Ed Engl 2019; 58:6818-6825. [PMID: 30216640 DOI: 10.1002/anie.201808700] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/16/2022]
Abstract
Organocatalytic methods have achieved spectacular advancements for the preparation of chiral molecules in highly enantioenriched forms. The fast development of this field can mainly be attributed to the evolution of general and reliable activation modes. The discovery and identification of new activation modes are therefore highly desirable to push the boundaries of asymmetric reactions. In this Minireview, recent advances in enantioselective carbonyl catalysis, one useful subbranch of organocatalysis for the efficient activation of simple amines, will be summarized. With elegantly designed chiral aldehyde catalysts, highly enantioselective and efficient asymmetric reactions can be developed. Continued development of enantioselective carbonyl catalysis is expected in the future.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Collaborative Innovation Center of Chemical Science, and Engineering, Tianjin, China
| |
Collapse
|
14
|
Wang Q, Gu Q, You S. Enantioselective Carbonyl Catalysis Enabled by Chiral Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing Gu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science, and Engineering Tianjin China
| |
Collapse
|
15
|
Tang S, Zhang X, Sun J, Niu D, Chruma JJ. 2-Azaallyl Anions, 2-Azaallyl Cations, 2-Azaallyl Radicals, and Azomethine Ylides. Chem Rev 2018; 118:10393-10457. [PMID: 30302999 DOI: 10.1021/acs.chemrev.8b00349] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review covers the use of 2-azaallyl anions, 2-azaallyl cations, and 2-azaallyl radicals in organic synthesis up through June 2018. Particular attention is paid to both foundational studies and recent advances over the past decade involving semistabilized and nonstabilized 2-azaallyl anions as key intermediates in various carbon-carbon and carbon-heteroatom bond-forming processes. Both transition-metal-catalyzed and transition-metal-free transformations are covered. Azomethine ylides, which have received significant attention elsewhere, are discussed briefly with the primary focus on critical comparisons with 2-azaallyl anions in regard to generation and use.
Collapse
Affiliation(s)
- Shaojian Tang
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry, Sino-British Materials Research Institute, College of Physical Sciences & Technology, and State Key Laboratory of Biotherapy, West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Xia Zhang
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry, Sino-British Materials Research Institute, College of Physical Sciences & Technology, and State Key Laboratory of Biotherapy, West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Jiayue Sun
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry, Sino-British Materials Research Institute, College of Physical Sciences & Technology, and State Key Laboratory of Biotherapy, West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Dawen Niu
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry, Sino-British Materials Research Institute, College of Physical Sciences & Technology, and State Key Laboratory of Biotherapy, West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry, Sino-British Materials Research Institute, College of Physical Sciences & Technology, and State Key Laboratory of Biotherapy, West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| |
Collapse
|
16
|
Chen R, Zeng L, Huang B, Shen Y, Cui S. Decarbonylative Coupling of α-Keto Acids and Ynamides for Synthesis of β-Keto Imides. Org Lett 2018; 20:3377-3380. [DOI: 10.1021/acs.orglett.8b01302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Renjie Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bo Huang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yangyong Shen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
17
|
Hou C, Zhao G, Xu D, Zhao B. Enantioselective biomimetic transamination of α-keto acids catalyzed by H4-naphthalene-derived axially chiral biaryl pyridoxamines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Liu F, Tian J, Liu Y, Tao C, Zhu H, Zhang A, Xu D, Zhao B. Decarboxylative Umpolung of conjugated enals to β-carbanions for intramolecular nucleophilic addition to an aldehyde. Org Chem Front 2017. [DOI: 10.1039/c6qo00846a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decarboxylative Umpolung converts enals to β-carbanions for intramolecular nucleophilic addition to an aldehyde group with excellent regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Feng Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Jiaxin Tian
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Yong Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Chuangan Tao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Hao Zhu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Aina Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Dongfang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| |
Collapse
|
19
|
Affiliation(s)
- Le Liu
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Chen J, Zhao J, Gong X, Xu D, Zhao B. A new type of chiral-pyridoxamines for catalytic asymmetric transamination of α-keto acids. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|