1
|
Gayen P, Ghorai P. Organocatalytic Asymmetric Construction of Spirooxazines via Chemoselective Cascade Addition of N-Substituted Hydroxylamine with Keto-bis-enone. Org Lett 2024; 26:6185-6190. [PMID: 39023290 DOI: 10.1021/acs.orglett.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Spirooxazines represent a privileged heterocyclic scaffold having pronounced biological importance. Herein, we introduce a chiral bifunctional squaramide catalyzed highly chemoselective cascade reaction involving aza-Michael/1,2-addition/oxa-Michael addition of N-substituted hydroxylamine with keto-bis-enones. This strategy enables the synthesis of highly enantioenriched oxa-spirooxazines with a broad substrate tolerance. Scalability and synthetic transformation have demonstrated the feasibility of the protocol. Furthermore, control experiments provided insights into the reaction mechanism.
Collapse
Affiliation(s)
- Prasenjit Gayen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| |
Collapse
|
2
|
Wang X, Lv R, Li X. Gold( i)-catalyzed diastereo- and enantioselective [4 + 3] cycloadditions: construction of functionalized furano-benzoxepins. Org Chem Front 2022. [DOI: 10.1039/d2qo01070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly diastereo- and enantioselective [4 + 3] cycloadditions of 2-(1-alkynyl)-2-alken-1-ones with o-QMs have been realized via a simple chiral gold catalysis, providing facile access to various functionalized furano-benzoxepins.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Wang X, Dong J, Xu X, Tang B. Dinucleophilic Reactivity of Isocyanoacetate: Base-Catalyzed One-Pot Access to 4-Azafluorenes and 4-Azafluorenones. Org Lett 2021; 23:9063-9067. [PMID: 34730361 DOI: 10.1021/acs.orglett.1c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A base-catalyzed double annulation of isocyanoacetates with various enynones has been developed for the expeditious synthesis of 4-azafluorene and 4-azafluorenone derivatives. Against the well-known 1,3-dipolar reactivities, the active methylene and isocyano groups of isocyanoacetate serve as nucleophiles in this domino transformation.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
4
|
Li Z, Zhou H, Xu J. Access to Chiral Polycyclic 1,4-Dihydropyridines via Organocatalytic Formal [3 + 3] Annulation of 2-(1-Alkynyl)-2-alken-1-ones with 3-Aminobenzofurans. Org Lett 2021; 23:6391-6395. [PMID: 34369778 DOI: 10.1021/acs.orglett.1c02211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rational designed tandem reaction of 2-(1-alkynyl)-2-alken-1-ones with 3-aminobenzofurans enabled by a chiral bifunctional catalyst is described, affording biologically significant polycyclic 1,4-dihydropyridines in moderate to good yields (43-82%) with good to excellent enantioselectivities (83-99%). This formal [3 + 3] annulation reaction reveals good practicality when conducted on a gram scale, and the cycloadduct has the capability for further elaborations.
Collapse
Affiliation(s)
- Zhanhuan Li
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
5
|
Sharma A, Nagaraju K, Rao GA, Gurubrahamam R, Chen K. Asymmetric Organocatalysis of Activated Alkynes and Enynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Koppanathi Nagaraju
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| |
Collapse
|
6
|
Sun F, Yang C, Ni J, Cheng GJ, Fang X. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydrocyanation of Silyl-Substituted 1,3-Diynes. Org Lett 2021; 23:4045-4050. [PMID: 33979524 DOI: 10.1021/acs.orglett.1c01262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regiodivergent nickel-catalyzed hydrocyanation of 1-aryl-4-silyl-1,3-diynes is reported. When appropriate bisphosphine and phosphine-phosphite ligands are applied, the same starting materials can be converted into two different enynyl nitriles with good yields and high regioselectivities. The DFT calculations unveiled that the structural features of different ligands bring divergent alkyne insertion modes, which in turn lead to different regioselectivities. Moreover, the synthetic value of the cyano-containing 1,3-enynes has been demonstrated with several downstream transformations.
Collapse
Affiliation(s)
- Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chengxi Yang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jie Ni
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Qian D, Zhang J. Yne-Enones Enable Diversity-Oriented Catalytic Cascade Reactions: A Rapid Assembly of Complexity. Acc Chem Res 2020; 53:2358-2371. [PMID: 32998506 DOI: 10.1021/acs.accounts.0c00466] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A small-molecule collection with structural diversity and complexity is a prerequisite to using either drug candidates or chemical probes for drug discovery and chemical-biology investigations, respectively. Over the past 12 years, we have engaged in developing efficient diversity-oriented cascade strategies for the synthesis of topologically diverse skeletons incorporating biologically relevant structural motifs such as O- and N-heterocycles, fused polycycles, and multifunctionalized allenes. In particular, we have highlighted the use of simple, linear, and densely functionalized molecular platforms in these reactions.This account details our efforts in the design of novel molecular platforms for use in metal- and organo-catalyzed cascade reactions, which include 2-(1-alknyl)-2-alken-1-ones (yne-enones) for heterocyclization/cross-coupling cascades, heterocyclization/cycloaddition cascades, nucleophilic addition/cross-coupling cascades, nucleophilic addition/heterocyclization cascades, and so on. Moreover, this Account outlines corresponding mechanistic insights, computational information, and applications of these cascades in the construction of various highly substituted carbo- and heterocycles as well as highly functionalized acyclic compounds, e.g., allenes and dienes. In addition to yne-enones, we evolved the functional groups of our original yne-enones to provide a series of yne-enone variants, which resulted in products with complementary reactivities.The reactivity profile of the yne-enones is defined by the presence of an alkyne moiety and a conjugated enone unit and their mutual through-bond connectivity. Owing to the conceptually rapid development of carbophilic activation, we have identified a series of efficient catalytic systems consisting of metal catalysts, including Pd, Au, and Rh complexes, for diversity-oriented cascade catalysis, allowing various unprecedented reactions to be achieved through different-types of reaction intermediates, including all-carbon metal 1,n-dipoles, furan-based o-quinodimethanes (oQDMs), and allenyl-metal species. In addition to commonly known transition-metal catalytic activity, the Lewis acidity of these complexes is crucial to accomplish the corresponding transformation. In addition, highly enantioselective gold(I)-catalyzed heterocyclization/cycloaddition cascades of yne-enones and their variants were achieved by the application of bisphosphines (e.g., Cn-TunePhos), monophosphines, and our developed "Ming-Phos" as chiral ligands. Importantly, Ming-Phos ligands exhibited excellent performance in gold-catalyzed mechanistically distinct [3 + n]-cycloaddition reactions, in which the chiral sulfinamide moiety is possibly responsible for the interaction with the substrate to control enantioselectivity. Subsequently, we demonstrated that the easily prepared polymer-supported Ming-Phos ligand could be applied for heterogeneously gold(I)-catalyzed asymmetric cycloaddition with good stereocontrol. With metal-free catalysis, the divergent functionalization of yne-enones provides numerous synthetic outlets for structure diversification. For example, yne-enones are particularly attractive for use as precursors of various chiral and achiral heterocycles, such as pyrazoles, isoxazoles, pyrroles, and pyrans, etc.
Collapse
Affiliation(s)
- Deyun Qian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| |
Collapse
|
8
|
Kang HJ, Lee JH, Kim DH, Cho CG. Imidazole-Selective Alkyne Hydroamination under Physiological Conditions. Org Lett 2020; 22:7588-7593. [DOI: 10.1021/acs.orglett.0c02785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hyung-Joon Kang
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Joon-Ho Lee
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Dong-Hyun Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
9
|
Li Z, Peng J, He C, Xu J, Ren H. Silver(I)-Mediated Cascade Reaction of 2-(1-Alkynyl)-2-alken-1-ones with 2-Naphthols. Org Lett 2020; 22:5768-5772. [DOI: 10.1021/acs.orglett.0c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanhuan Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jingyi Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Chonglong He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jianfeng Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
10
|
Bao X, Ren J, Yang Y, Ye X, Wang B, Wang H. 2-Activated 1,3-enynes in enantioselective synthesis. Org Biomol Chem 2020; 18:7977-7986. [PMID: 32996970 DOI: 10.1039/d0ob01614d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid enantioselective synthesis of valuable building blocks and pharmaceutically important compounds from easily accessible precursors is one of the major areas of focus in organic chemistry. In this context, 2-activated 1,3-enyne has emerged as a powerful synthon in recent years for the efficient synthesis of enantioenriched furans, allenes, 4-H-pyrans, and 4-isoxazolines, which are privileged scaffolds in bioactive compounds and natural products. This review will cover the history of the development of 2-activated 1,3-enyne in enantioselective synthesis along with the corresponding mechanisms, which may motivate further development in this area to forge more complex and valuable molecules.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jinhui Ren
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Kumpuga BT, Itsuno S. Synthesis of Crosslinked Chiral Polysiloxanes of Cinchona Alkaloid Derivatives and their Applications in Asymmetric Catalysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bahati Thom Kumpuga
- Department of Environmental & Life Sciences; Toyohashi University of Technology; Toyohashi 441-8580 Japan
| | - Shinichi Itsuno
- Department of Environmental & Life Sciences; Toyohashi University of Technology; Toyohashi 441-8580 Japan
| |
Collapse
|
12
|
Kumpuga BT, Itsuno S. Synthesis of chiral polyurethanes of cinchona alkaloids for the enantioselective synthesis in asymmetric catalysis. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Pradhan TR, Kim HW, Park JK. Harnessing the Polarizability of Conjugated Alkynes toward [2 + 2] Cycloaddition, Alkenylation, and Ring Expansion of Indoles. Org Lett 2018; 20:5286-5290. [PMID: 30141335 DOI: 10.1021/acs.orglett.8b02230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reported is the utilization of electronically biased conjugated alkynes in the development of highly diastereo- and regioselective dearomative [2 + 2] cycloadditions, alkenylations, and ring expansions of electron-rich indoles. Regioselective protonations of cross- and linear-conjugated alkynes were found to be crucial for accessing various cyclobutene-fused indoline and alkenylated indole derivatives. Furthermore, the facile ring expansion of [2 + 2] keto adducts, which were successfully synthesized from ynones, provided 1 H-benzo[ b]azepine scaffolds.
Collapse
Affiliation(s)
- Tapas R Pradhan
- The Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Hong Won Kim
- The Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Jin Kyoon Park
- The Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| |
Collapse
|
14
|
Kumpuga BT, Itsuno S. Synthesis of chiral polyesters of cinchona alkaloid catalysts for enantioselective Michael addition of anthrone to nitroalkenes. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Uno BE, Dicken RD, Redfern LR, Stern CM, Krzywicki GG, Scheidt KA. Calcium(ii)-catalyzed enantioselective conjugate additions of amines. Chem Sci 2018; 9:1634-1639. [PMID: 29675209 PMCID: PMC5887857 DOI: 10.1039/c7sc05205g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA]2)-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed.
The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA]2)-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.
Collapse
Affiliation(s)
- Brice E Uno
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| | - Rachel D Dicken
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| | - Louis R Redfern
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| | - Charlotte M Stern
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| | - Greg G Krzywicki
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| | - Karl A Scheidt
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Rd , Evanston , IL 60208 , USA .
| |
Collapse
|
16
|
Bao X, Wei S, Qu J, Wang B. C6′ steric bulk of cinchona alkaloid enables an enantioselective Michael addition/annulation sequence toward pyranopyrazoles. Chem Commun (Camb) 2018; 54:2028-2031. [DOI: 10.1039/c8cc00154e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A C6′ silyloxyl quinine catalyzed asymmetric Michael addition/annulation cascade between pyrazolones and enynones was developed.
Collapse
Affiliation(s)
- Xiaoze Bao
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
17
|
Tangara S, Kanazawa A, Py S. The Baldwin Rearrangement: Synthesis of 2-Acylaziridines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salia Tangara
- Univ. Grenoble Alpes; DCM; CNRS; 38000 Grenoble France
| | | | - Sandrine Py
- Univ. Grenoble Alpes; DCM; CNRS; 38000 Grenoble France
| |
Collapse
|
18
|
Pathipati SR, Eriksson L, Selander N. Stereoselective synthesis of bicyclo[3.n.1]alkenone frameworks by Lewis acid-catalysis. Chem Commun (Camb) 2017; 53:11353-11356. [DOI: 10.1039/c7cc06400d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An indium-catalysed α,α′-annulation of cyclic ketones and alkynyl enones, leading to bicyclo[3.n.1]alkenones, is presented.
Collapse
Affiliation(s)
- Stalin R. Pathipati
- Department of Organic Chemistry
- Stockholm University
- Arrhenius Laboratory
- Stockholm
- Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry
- Stockholm University
- Arrhenius Laboratory
- Stockholm
- Sweden
| | - Nicklas Selander
- Department of Organic Chemistry
- Stockholm University
- Arrhenius Laboratory
- Stockholm
- Sweden
| |
Collapse
|
19
|
Xiao Y, Lin JB, Zhao YN, Liu JY, Xu PF. Exploring the Reactivity of Nitro-Activated 1,3-Enynes in an Organocatalytic One-Pot, Three-Component Coupling Reaction: A Tandem Catalytic Approach to a Novel 3-Nitrochroman Scaffold. Org Lett 2016; 18:6276-6279. [DOI: 10.1021/acs.orglett.6b03073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Applied
Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun-Bing Lin
- State Key Laboratory of Applied
Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yin-Na Zhao
- State Key Laboratory of Applied
Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Yu Liu
- State Key Laboratory of Applied
Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied
Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|