1
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022; 61:e202205963. [DOI: 10.1002/anie.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
2
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
3
|
Yang J, Zeng T, Yan K, Qin Z, Wen J. Direct Synthesis of Alkylthioimidazoles: One‐Pot Three‐Component Cross‐Coupling Mediated by Paired Electrolysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Ting Zeng
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Zonghui Qin
- College of Chemistry and Chemical Engineering Yangtze Normal University Fuling 408000 Chongqing People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| |
Collapse
|
4
|
Pann J, Erharter K, Langerreiter D, Partl G, Müller T, Schottenberger H, Hummel M, Hofer TS, Kreutz C, Fliri L. Mechanistic Insights into the Formation of 1-Alkylidene/Arylidene-1,2,4-triazolinium Salts: A Combined NMR/Density Functional Theory Approach. J Org Chem 2022; 87:1019-1031. [PMID: 34978817 PMCID: PMC8790756 DOI: 10.1021/acs.joc.1c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/29/2022]
Abstract
In a recent report on the synthetic approach to the novel substance class of 1-alkylidene/arylidene-1,2,4-triazolinium salts, a reaction mechanism suggesting a regioselective outcome was proposed. This hypothesis was tested via a combined NMR and density functional theory (DFT) approach. To this end, three experiments with 13C-labeled carbonyl reactants were monitored in situ by solution-state NMR. In one experiment, an intermediate as described in the former mechanistic proposal was observed. However, incorporation of 13C isotope labels into multiple sites of the heterocycle could not be reconciled with the "regioselective mechanism". It was found that an unproductive reaction pathway can lead to 13C scrambling, along with metathetical carbonyl exchange. According to DFT calculations, the concurring reaction pathways are connected via a thermodynamically controlled cyclic 1,3-oxazetidine intermediate. The obtained insights were applied in a synthetic study including aliphatic ketones and para-substituted benzaldehydes. The mechanistic peculiarities set the potential synthetic scope of the novel reaction type.
Collapse
Affiliation(s)
- Johann Pann
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniel Langerreiter
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| | - Gabriel Partl
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Herwig Schottenberger
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| | - Thomas S. Hofer
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Fliri
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| |
Collapse
|
5
|
Campeau D, Pommainville A, Gagosz F. Ynamides as Three-Atom Components in Cycloadditions: An Unexplored Chemical Reaction Space. J Am Chem Soc 2021; 143:9601-9611. [PMID: 34132536 DOI: 10.1021/jacs.1c04051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While 1,3-dipolar cycloadditions have appeared to be a fertile area for research, as attested by the numerous synthetic transformations and resulting applications that have been developed during the past 60 years, the use of neutral three-atom components (TACs) in (3+2) cycloadditions remains comparatively sparse. Neutral TACs, however, have great synthetic potential given that their reaction with a π system can produce zwitterionic cycloadducts that may be manipulated for further chemistry. We report herein that ynamides, a class of carbon π systems that has seen wide interest over the last two decades, can be used as neutral TACs in thermally induced intramolecular (3+2) cycloaddition reactions with alkynes to yield a variety of functionalized pyrroles. The transformation is proposed to occur in a stepwise manner via the intermediacy of a pyrrolium ylide, from which the electron-withdrawing group on the nitrogen atom undergoes an intramolecular 1,2-shift to produce the neutral pyrrole. This work demonstrates a yet unexplored facet of ynamide reactivity with great potential in heterocyclic chemistry.
Collapse
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Alice Pommainville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| |
Collapse
|
6
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
7
|
Allen MA, Ivanovich RA, Beauchemin AM. O-Isocyanates as Uncharged 1,3-Dipole Equivalents in [3+2] Cycloadditions. Angew Chem Int Ed Engl 2020; 59:23188-23197. [PMID: 32767511 DOI: 10.1002/anie.202007942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/10/2022]
Abstract
1,3-Dipoles are commonly used in [3+2] cycloadditions, whereas isoelectronic uncharged dipole variants remain underdeveloped. In contrast to conventional 1,3-dipoles, uncharged dipole equivalents form zwitterionic cycloadducts, which can be exploited to build further molecular complexity. In this work, the first cycloadditions of oxygen-substituted isocyanates (O-isocyanates) were studied experimentally and by DFT calculations. This unique cycloaddition strategy provides access to a novel class of heterocycle aza-oxonium ylides through intramolecular and intermolecular cycloadditions with alkenes. This allowed a systematic study of the reactivity of the transient aza-oxonium ylide intermediate, which can undergo N-O bond cleavage followed by nitrene C-H insertion, and the formation of β-lactams or isoxazolidinones upon varying the structure of the alkene or O-isocyanate reagents.
Collapse
Affiliation(s)
- Meredith A Allen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Ryan A Ivanovich
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N 6N5, Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
8
|
Allen MA, Ivanovich RA, Beauchemin AM. O
‐Isocyanates as Uncharged 1,3‐Dipole Equivalents in [3+2] Cycloadditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meredith A. Allen
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Ryan A. Ivanovich
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - André M. Beauchemin
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| |
Collapse
|
9
|
Liu J, Chen C, Kotagiri R, Yang W, Cai Q. A Simple Transformation of 1‐(Isoxazol‐3‐yl)ureas to 5‐(2‐oxoalkyl)‐2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones through Base‐Promoted Boulton‐Katritzky Rearrangement. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jisheng Liu
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| | - Chen Chen
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| | - Rajendraprasad Kotagiri
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| | - Wenqiang Yang
- College of PharmacyLinyi University Shuangling Road Linyi 276000 People's Republic of China
| | - Qian Cai
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| |
Collapse
|
10
|
Anitha M, Swamy KCK. Synthesis of thiazolidine-thiones, imino-thiazolidines and oxazolidines via the base promoted cyclisation of epoxy-sulfonamides and heterocumulenes. Org Biomol Chem 2018; 16:402-413. [DOI: 10.1039/c7ob02915b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-sulfonamides react with heterocumulenes (CS2/RNCS/RNCO) in the presence of a base to afford ring expansion products in good to high yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Mandala Anitha
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | | |
Collapse
|
11
|
Zhang Q, Guo S, Yang J, Yu K, Feng X, Lin L, Liu X. Asymmetric Formal [3 + 2]-Cycloaddition of Azomethine Imines with Azlactones To Synthesize Bicyclic Pyrazolidinones. Org Lett 2017; 19:5826-5829. [DOI: 10.1021/acs.orglett.7b02772] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Songsong Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kunru Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Elkaeed EB, An J, Beauchemin AM. Synthesis of Indazolones via Friedel–Crafts Cyclization of Blocked (Masked) N-Isocyanates. J Org Chem 2017; 82:9890-9897. [DOI: 10.1021/acs.joc.7b01607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eslam B. Elkaeed
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
- Department
of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Jing An
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - André M. Beauchemin
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
13
|
Bongers A, Clavette C, Gan W, Gorelsky SI, Betit L, Lavergne K, Markiewicz T, Moon PJ, Das Neves N, Obhi NK, Toderian AB, Beauchemin AM. Intermolecular Aminocarbonylation of Alkenes using Concerted Cycloadditions of Iminoisocyanates. J Org Chem 2017; 82:1175-1194. [DOI: 10.1021/acs.joc.6b02713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amanda Bongers
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Christian Clavette
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Wei Gan
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Serge I. Gorelsky
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Lyanne Betit
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Kaitlyn Lavergne
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Thomas Markiewicz
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Patrick J. Moon
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Nicolas Das Neves
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Nimrat K. Obhi
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Amy B. Toderian
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - André M. Beauchemin
- Centre for Catalysis Research
and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
14
|
Bayazit MK, Moniz SJA, Coleman KS. Gram-scale production of nitrogen doped graphene using a 1,3-dipolar organic precursor and its utilisation as a stable, metal free oxygen evolution reaction catalyst. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc04044j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a one-step scalable synthesis of a few-layer ∼10% nitrogen doped (N-doped) graphene nanosheets (GNSs) from a stable but highly reactive 1,3-dipolar organic precursor is reported.
Collapse
Affiliation(s)
- Mustafa K. Bayazit
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Department of Chemical Engineering
| | | | | |
Collapse
|