1
|
Li Q, Liang XX, Zhang W, Han MY. Friedel-Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives. Molecules 2023; 28:5685. [PMID: 37570655 PMCID: PMC10420641 DOI: 10.3390/molecules28155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
A novel double Friedel-Crafts reaction of acylsilanes in water is described. This strategy enables synthesis of bis(indolyl)methane derivatives with 1-hydroxy or 1-silyl substituents in moderate to high yield. Compared to the 1-silyl-bis(indolyl)methane derivatives from indole substrate, 1-hydroxy-bis(indolyl)methane derivatives were synthesized from the 5-hydroxyindole, and the hydrogen bonds in the 5-hydroxyindole play a crucial role in regulating the reaction selectivity.
Collapse
Affiliation(s)
| | | | | | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (Q.L.); (X.-X.L.); (W.Z.)
| |
Collapse
|
2
|
Kumar M, Goswami A. Tunable Regio- and Stereoselective Synthesis of Z-Acrylonitrile Indoles and 3-Cyanoquinolines from 2-Alkynylanilines and Alkynylnitriles. Org Lett 2023; 25:3254-3259. [PMID: 37126068 DOI: 10.1021/acs.orglett.3c00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The merger of two bifunctional moieties, 2-alkynylaniline and alkynylnitriles, in the presence of ZnBr2 offers the tunable synthesis of two biologically important motifs: acrylonitrile indoles and 3-cyanoquinolines. The group present on the terminal alkyne of 2-alkynylaniline regulates the reaction pathways, intra- versus intermolecular, which thereby adds stereoselectivity and regioselectivity in this protocol. The conversion of an acrylonitrile indole ring to quinoline is an intriguing synthetic utility of this methodology.
Collapse
Affiliation(s)
- Madan Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Jadhav SD, Singh T, Thakur N, Singh A. Silver Triflate Catalyzed Domino Reactions of
o
‐Alkynylanilines: An Approach Toward Unsymmetrical Diarylacetates and Triarylmethanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Naveen Thakur
- Department of Chemistry IIT Kanpur Kanpur-208016 India
| | - Anand Singh
- Department of Chemistry IIT Kanpur Kanpur-208016 India
| |
Collapse
|
4
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Deb B, Debnath S, Chakraborty A, Majumdar S. Bis-indolylation of aldehydes and ketones using silica-supported FeCl 3: molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Adv 2021; 11:30827-30839. [PMID: 35498942 PMCID: PMC9041420 DOI: 10.1039/d1ra05679d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
We report herein an operationally simple, efficient and versatile procedure for the synthesis of bis-indolylmethanes via the reaction of indoles with aldehydes or ketones in the presence of silica-supported ferric chloride under grindstone conditions. The prepared supported catalyst was characterized by SEM and EDX spectroscopy. The present protocol has several advantages such as shorter reaction time, high yield, avoidance of using harmful organic solvents during the reaction and tolerance of a wide range of functional groups. Molecular docking studies targeted toward the binding site of SARS-CoV-2 main protease (3CLpro or Mpro) enzymes were investigated with the synthesized bis-indoles. Our study revealed that some of the synthesized compounds have potentiality to inhibit the SARS-CoV-2 Mpro enzyme by interacting with key amino acid residues of the active sites via hydrophobic as well as hydrogen bonding interactions.
Collapse
Affiliation(s)
- Barnali Deb
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-237-4802 +91-381-237-9070
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidalaya Tripura 799114 India
| | - Ankita Chakraborty
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-237-4802 +91-381-237-9070
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-237-4802 +91-381-237-9070
| |
Collapse
|
6
|
Guo S, Chen J, Yi M, Dong L, Lin A, Yao H. An approach to unsymmetrical 3,3′-diindolylmethanes through Pd-catalyzed cascade Heck cyclization of allenamides and o-ethynylanilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01539c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly efficient synthesis of unsymmetrical 3,3′-diindolylmethanes has been developed by palladium-catalyzed cascade Heck/cyclization reaction.
Collapse
Affiliation(s)
- Songjin Guo
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jiayi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Mingjun Yi
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Liuli Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
7
|
Karmakar S, Das P, Kundu S. Silver-catalyzed tandem 5- and 6- endo-cyclizations via concomitant yne-ol-imine activation: selective entry to 2-aryldihydrofuroquinolines. NEW J CHEM 2021. [DOI: 10.1039/d1nj02643g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ag(i)-catalyzed domino imination-intramolecular bi-heterocyclization-aromatization cascade has been developed to construct 2-aryldihydrofuroquinolines from aldehyde and unprotected 4-(2-aminophenyl)but-3-yn-1-ol via tandem 5-endo-dig and 6-endo-trig cyclization.
Collapse
Affiliation(s)
- Swastik Karmakar
- Department of Chemistry, Basirhat College, A/w West Bengal State University, Basirhat-743412, West Bengal, India
| | - Prasanta Das
- Department of Chemistry, Basirhat College, A/w West Bengal State University, Basirhat-743412, West Bengal, India
| | - Sandip Kundu
- CIF Division, Indian Institute of Chemical Biology (IICB), Jadavpur-700032, West Bengal, India
| |
Collapse
|
8
|
Kundu S, Kayet A, Baidya R, Satyanarayana L, Maiti DK. Nanofibrils of a Cu II-Thiophenyltriazine-Based Porous Polymer: A Diverse Heterogeneous Nanocatalyst. ACS OMEGA 2020; 5:394-405. [PMID: 31956787 PMCID: PMC6964281 DOI: 10.1021/acsomega.9b02904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Herein, we report knitting of a thiophenyltriazine-based porous organic polymer (TTPOP) with high surface area and high abundance of nitrogen and sulfur sites, synthesized through a simple one-step Friedel-Crafts reaction of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine and formaldehyde dimethyl acetal in the presence of anhydrous FeCl3, and thereafter grafting of Cu(OAc)2·H2O in the porous polymer framework to achieve the potential catalyst (CuII-TTPOP). TTPOP and CuII-TTPOP were characterized thoroughly utilizing solid-state 13C-CP MAS NMR, Fourier transform infrared, wide-angle powder X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy and surface imaging by transmission electron microscopy and field emission scanning electron microscopy. The porosity of the nanomaterials was observed in the surface imaging and verified through conducting N2 gas adsorption techniques. Keeping in mind the tremendous importance of C-C and C-N coupling and cyclization processes, the newly synthesized CuII-TTPOP was employed successfully for a wide range of organic catalytic transformations under mild conditions to afford directly valuable diindolylmethanes and spiro-analogues, phthalimidines, propargyl amines, and their sugar-based chiral compounds with high yields using readily available substrates. The highly stable new heterogeneous catalyst showed outstanding sustainability, robustness, simple separation, and recyclability.
Collapse
Affiliation(s)
- Sudipta
K. Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Anirban Kayet
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Ramlal Baidya
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Lanka Satyanarayana
- Analytical
Department, CSIR-Indian Institute of Chemical
Technology, Uppal Road, Hyderabad 500007, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Nguyen HT, Nguyen TT, Nguyen PT, Tran PH. A highly active copper-based metal-organic framework catalyst for a friedel–crafts alkylation in the synthesis of bis(indolyl)methanes under ultrasound irradiation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Kim Y, Lee J, Jung J, Kim SG. Chiral Brønsted acid-catalyzed Friedel–Crafts reaction of 3-indolylsulfamidates with indoles: Synthesis of enantioenriched bisindolylmethane sulfamates. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Clarke AK, Ho HE, Rossi‐Ashton JA, Taylor RJK, Unsworth WP. Indole Synthesis Using Silver Catalysis. Chem Asian J 2019; 14:1900-1911. [DOI: 10.1002/asia.201900309] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hon E. Ho
- Department of ChemistryUniversity of York York YO10 5DD UK
| | | | | | | |
Collapse
|
12
|
|
13
|
Samanta S, Hajra A. Ruthenium-catalyzed tandem annulation/arylation for the synthesis of unsymmetrical bis(heteroaryl)methanes. Org Biomol Chem 2018; 16:8390-8394. [PMID: 30209462 DOI: 10.1039/c8ob01892h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new Ru-catalyzed tandem furan annulation/arylation strategy has been developed to afford unsymmetrical bis(heteroaryl)methanes by a reaction between propargyl amines and indoles. A series of bis(heteroaryl)methanes containing furan and indole as well as indole and imidazopyridine moieties have been synthesized in high yields. The reaction possibly proceeds through furan annulation followed by nucleophilic addition of indole.
Collapse
Affiliation(s)
- Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235 West Bengal, India.
| | | |
Collapse
|
14
|
Tharra P, Baire B. Regioselective Cyclization of (Indol-3-yl)pentyn-3-ols as an Approach to (Tetrahydro)carbazoles. Org Lett 2018; 20:1118-1121. [DOI: 10.1021/acs.orglett.8b00042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Prabhakararao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu, India-600036
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu, India-600036
| |
Collapse
|
15
|
Ganesan B, Senadi GC, Guo BC, Hung MY, Lin WY. A copper(ii)-catalyzed annulative formylation of o-alkynylanilines with DMF: a single-step strategy for 3-formyl indoles. RSC Adv 2018; 8:40968-40973. [PMID: 35557929 PMCID: PMC9092273 DOI: 10.1039/c8ra09214a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, a copper(ii)-catalyzed reaction of o-alkynylanilines with dimethylformamide (DMF) in the presence of oxygen has been developed for synthesizing multisubstituted 3-formyl indole scaffolds.
Collapse
Affiliation(s)
- Balaji Ganesan
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Gopal Chandru Senadi
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
- Department of Chemistry
| | - Bing-Chun Guo
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Min-Yuan Hung
- Center for Research Resources and Development
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| |
Collapse
|
16
|
Arai T, Kuwano S, Suzuki T. 2-Iodoimidazolinium Salt-Catalyzed Friedel–Crafts Reaction: Synthesis of Bis(indolyl)methane Alkaloids. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Zhang Y, Yang X, Zhou H, Li S, Zhu Y, Li Y. Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: a facile access to 3,3′ bisindolylmethanes. Org Chem Front 2018. [DOI: 10.1039/c8qo00341f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid synthesis of 3,3′-bisindolylmethanes is achieved via a photocatalyzed double Friedel–Crafts alkylation reaction between glycine derivatives and indoles.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Huang Zhou
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shilin Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
18
|
Dagar A, Guin S, Samanta S. AgSbF6
-Catalyzed Tandem Reaction of 2-Alkynylanilines with Cyclic Enynones: Efficient access to 3-Furo[3,2-c
]chromenylindoles and Related Scaffolds. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anuradha Dagar
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Soumitra Guin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| |
Collapse
|
19
|
Ye L, Cai SH, Wang DX, Wang YQ, Lai LJ, Feng C, Loh TP. Photoredox Catalysis Induced Bisindolylation of Ethers/Alcohols via Sequential C-H and C-O Bond Cleavage. Org Lett 2017; 19:6164-6167. [PMID: 29112428 DOI: 10.1021/acs.orglett.7b03073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A visible-light-engaged 2-fold site-selective alkylation of indole derivatives with aliphatic ethers or alcohols has been accomplished for easy access to symmetric 3,3'-bisindolylmethane derivatives. The experimental data suggest a sequential photoredox catalysis induced radical addition and proton-mediated Friedel-Crafts alkylation mechanism.
Collapse
Affiliation(s)
- Lu Ye
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Sai-Hu Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China.,Department of Chemistry, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Ding-Xing Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Yi-Qiu Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Lin-Jie Lai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Chao Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Department of Chemistry, University of Science and Technology of China , Hefei 230026, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| |
Collapse
|
20
|
Kayet A, Singh VK. A one-pot synthesis of 2,2'-disubstituted diindolylmethanes (DIMs) via a sequential Sonogashira coupling and cycloisomerization/C3-functionalization of 2-iodoanilines. Org Biomol Chem 2017; 15:6997-7007. [PMID: 28792550 DOI: 10.1039/c7ob01701d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Pd(ii)-Ag(i) catalyzed highly efficient synthesis of diindolylmethane has been developed. This transformation consists of a one-pot sequential Sonogashira coupling (and desilylation) followed by cycloisomerization/C3-functionalization of 2-iodoanilines. Six new bonds (four C-C and two C-N) are formed in a one-pot fashion. A variety of diindolylmethanes were obtained in excellent yields (up to 94%) under mild reaction conditions and this strategy is amenable to gram scale synthesis also. The products were transformed into various synthetically useful compounds.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India.
| | | |
Collapse
|