1
|
Yin XG, Chen XZ, Qiu JL, Yu ZK, Chen LY, Huang SQ, Huang WN, Luo X, Zhu KW. A conjugate vaccine strategy that induces protective immunity against arecoline. Eur J Med Chem 2024; 268:116229. [PMID: 38430852 DOI: 10.1016/j.ejmech.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Betel-quid chewing addiction is the leading cause of oral submucous fibrosis and oral cancer, resulting in significant socio-economic burdens. Vaccination may serve as a promising potential remedy to mitigate the abuse and combat accidental overdose of betel nut. Hapten design is the crucial factor to the development of arecoline vaccine that determines the efficacy of a candidate vaccine. Herein, we reported that two kinds of novel arecoline-based haptens were synthesized and conjugated to Bovine Serum Albumin (BSA) to generate immunogens, which generated antibodies with high affinity for arecoline but reduced binding for guvacoline and no affinity for arecaidine or guvacine. Notably, vaccination with Arec-N-BSA, which via the N-position on the tetrahydropyridine ring (tertiary amine group), led to a higher antibody affinity compared to Arec-CONH-BSA, blunted analgesia and attenuated hypothermia for arecoline.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Jia-Ling Qiu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Kai Yu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Li-Yuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Si-Qi Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Wen-Na Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Ke-Wu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
2
|
Li T, Zhang Y, Li T, Zhuang H, Wang F, Wang N, Schmidt RR, Peng P. Divergent Synthesis of Core m1, Core m2 and Core m3
O
‐Mannosyl
Glycopeptides via a Chemoenzymatic Approach. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | | | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Singh Chouhan P, Singh D, Purohit P, Sharma G, Kant R, Shukla SK, Chauhan PMS. PPh
3
Catalyzed Post‐Transformation Ugi‐4CR Intramolecular Cyclization Reaction: One‐Pot Synthesis of Functionalized Spiropyrrolidinochromanones. ChemistrySelect 2021. [DOI: 10.1002/slct.202003936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pradeep Singh Chouhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Deepti Singh
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Pooja Purohit
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Gaurav Sharma
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
| | - Sanjeev K. Shukla
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Du JJ, Zhang L, Gao XF, Sun H, Guo J. Peptidyl ω-Asp Selenoesters Enable Efficient Synthesis of N-Linked Glycopeptides. Front Chem 2020; 8:396. [PMID: 32478036 PMCID: PMC7232547 DOI: 10.3389/fchem.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Chemical synthesis is an attractive approach allows for the assembly of homogeneous complex N-linked glycopeptides and glycoproteins, but the limited coupling efficiency between glycans and peptides hampered the synthesis and research in the related field. Herein we developed an alternative glycosylation to construct N-linked glycopeptide via efficient selenoester-assisted aminolysis, which employs the peptidyl ω-asparagine selenoester and unprotected glycosylamine to perform rapid amide-bond ligation. This glycosylation strategy is highly compatible with the free carboxylic acids and hydroxyl groups of peptides and carbohydrates, and readily available for the assembly of structure-defined homogeneous N-linked glycopeptides, such as segments derived from glycoprotein EPO and IL-5.
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Lian Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, Hubei Province Key Laboratory of Allergy and Immunology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Life Sciences, Ministry of Education, Wuhan University, Wuhan, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Baumann AL, Schwagerus S, Broi K, Kemnitz-Hassanin K, Stieger CE, Trieloff N, Schmieder P, Hackenberger CPR. Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations. J Am Chem Soc 2020; 142:9544-9552. [DOI: 10.1021/jacs.0c03426] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alice L. Baumann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Sergej Schwagerus
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Broi
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kristin Kemnitz-Hassanin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian E. Stieger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nils Trieloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
7
|
Yin H, Lu D, Wang S, Wang P. Development of Powerful Auxiliary-Mediated Ligation To Facilitate Rapid Protein Assembly. Org Lett 2019; 21:5138-5142. [PMID: 31247759 DOI: 10.1021/acs.orglett.9b01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we describe an Se-auxiliary mediated ligation protocol capable of rapid native chemical ligations at sterically hindered junctions, followed by in situ auxiliary cleavage under neutral conditions without affecting unprotected Cys residues. This auxiliary, which is prepared from phenyl acetaldehyde in one step, can be conveniently attached to the N-terminal region of a peptide via a reductive amination or coupling reaction. We demonstrated this methodology by synthesizing two protein samples.
Collapse
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
8
|
Chen XZ, Zhang RY, Wang XF, Yin XG, Wang J, Wang YC, Liu X, Du JJ, Liu Z, Guo J. Peptide-free Synthetic Nicotine Vaccine Candidates with α-Galactosylceramide as Adjuvant. Mol Pharm 2019; 16:1467-1476. [DOI: 10.1021/acs.molpharmaceut.8b01095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ya-Cong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
9
|
Das A, Li PJ, Adak AK, Wu HR, Anwar MT, Chiang PY, Sun CM, Hwu JR, Lin CC. Stereoselective synthesis of a 9- O-sulfo Neu5Gc-capped O-linked oligosaccharide found on the sea urchin egg receptor. Org Chem Front 2019. [DOI: 10.1039/c8qo00996a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first total synthesis of a serine bearing α2→5-Oglycolyl-linked oligoNeu5Gc found on sea urchin egg cell surfaces has been accomplished.
Collapse
Affiliation(s)
- Anindya Das
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Pei-Jhen Li
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Avijit K. Adak
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | | | - Pei-Yun Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu-30013
- Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| |
Collapse
|
10
|
Du JJ, Xin LM, Lei Z, Zou SY, Xu WB, Wang CW, Zhang L, Gao XF, Guo J. Glycopeptide ligation via direct aminolysis of selenoester. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Liu Z, Guo J. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine. Carbohydr Res 2017; 452:78-90. [DOI: 10.1016/j.carres.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023]
|
12
|
Jiang YY, Zhu L, Liang Y, Man X, Bi S. Mechanism of Amide Bond Formation from Carboxylic Acids and Amines Promoted by 9-Silafluorenyl Dichloride Derivatives. J Org Chem 2017; 82:9087-9096. [DOI: 10.1021/acs.joc.7b01637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling Zhu
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yujie Liang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xiaoping Man
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
13
|
Yin XG, Chen XZ, Sun WM, Geng XS, Zhang XK, Wang J, Ji PP, Zhou ZY, Baek DJ, Yang GF, Liu Z, Guo J. IgG Antibody Response Elicited by a Fully Synthetic Two-Component Carbohydrate-Based Cancer Vaccine Candidate with α-Galactosylceramide as Built-in Adjuvant. Org Lett 2017; 19:456-459. [DOI: 10.1021/acs.orglett.6b03591] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Wen-Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Shan Geng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Kang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Pan-Pan Ji
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Zhong-Yin Zhou
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Dong Jae Baek
- College
of Pharmacy, Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Korea
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|