1
|
Bahadori S, Archambault MJ, Sebastiao M, Bourgault S, Giguère D. Convergent Synthesis of a Group B Streptococcus Type III Epitope Toward a Semisynthetic Carbohydrate-Based Vaccine. J Org Chem 2024; 89:13978-13992. [PMID: 39033407 DOI: 10.1021/acs.joc.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In this work, we synthesized an hexasaccharide derived from the capsular polysaccharide of group B Streptococcus type III capsular polysaccharide. Our convergent 3 + 3 strategy avoided the use of benzyl protecting groups allowing the installation of an azide anchoring group and providing a high yield for the final deprotection steps. Moreover, the minimal hexasaccharidic epitope was conjugated to CRM197 and BSA via copper-catalyzed azide-alkyne cycloaddition for the preparation of a semisynthetic carbohydrate-based vaccine.
Collapse
Affiliation(s)
- Sam Bahadori
- Département de Chimie, Université Laval, 1045 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
| | - Marie-Jeanne Archambault
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Mathew Sebastiao
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval, 1045 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
| |
Collapse
|
2
|
Puri K, Kulkarni SS. Total synthesis of a structurally complex zwitterionic hexasaccharide repeating unit of polysaccharide B from Bacteroides fragilis via one-pot glycosylation. Commun Chem 2024; 7:204. [PMID: 39285253 PMCID: PMC11405768 DOI: 10.1038/s42004-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Zwitterionic polysaccharides (ZPSs) present on the surface of a common gut commensal Bacteroides fragilis are endowed with unique immunological properties as they can directly bind to T-cells in the absence of protein conjugation. ZPSs are therefore considered to be potential antigens for the development of totally carbohydrate-based vaccines. Herein, we disclose the first total synthesis of a highly branched phosphorylated zwitterionic capsular polysaccharide repeating unit of Bacteroides fragilis. The hexasaccharide repeating unit bearing six different monosaccharides comprises three 1,2-cis-glycosidic linkages, a challenging 1,2-trans linkage in D-QuipNAc-β-(1→4)-D-Gal motif, and a 2-aminoethyl phosphonate appendage. The synthesis of target ZPS was accomplished utilizing an expeditious, highly stereoselective and convergent (1 + 2 + 2 + 1) one-pot glycosylation strategy. The striking features include efficient synthesis of rare deoxy amino sugars D- and L-quinovosamine, stereoselective installation of three 1,2-cis glycosidic linkages, glycosylation of D-quinovosamine donor with a sterically crowded, poorly reactive 4-OH galactose moiety, as well as late stage phosphorylation.
Collapse
Affiliation(s)
- Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
3
|
Guo YF, Yu JC, Dong H. Regioselective Glycosylation of Mannoside and Galactoside Acceptors Containing 2,4-OH Achieved by Altering Protecting Groups at the 1,3,6-Positions. J Org Chem 2024; 89:8706-8720. [PMID: 38825808 DOI: 10.1021/acs.joc.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
In this study, we systematically investigated the regioselective glycosylation of 2,4-OH mannoside and galactoside acceptors since regioselective protection of their 3- and 6-OHs is readily achieved. By altering the protecting groups at 1-, 3-, and 6-positions of such acceptors, we finally screened p-methoxyphenyl 3-OBn, 6-OTBDPS, α-mannoside, and β-galactoside acceptors whose 2-OHs exhibited excellent selectivity for glycosylation with various glycosyl donors, leading to 1,2-linked products in 70-82% yields. By utilizing such acceptors, a series of 2,4-linked trisaccharide products (53-65% yields over two steps) have been highly efficiently synthesized without the need for complex protection/deprotection operations at the 2- and 4-positions of these acceptors.
Collapse
Affiliation(s)
- Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Jian-Cheng Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Yao W, Ye XS. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis. Acc Chem Res 2024; 57:1577-1594. [PMID: 38623919 DOI: 10.1021/acs.accounts.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Carbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).
Collapse
Affiliation(s)
- Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
6
|
Zhao Q, Zhou S, Wang Y, Yang X, Meng Y, Zhang Y, Gao J. Stereoselective synthesis of the 3,6-branched Fuzi α-glucans up to 15-mer via a one-pot and convergent glycosylation strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
8
|
Hoang KM, Zheng X, Herzon SB. Synthesis of 2-Deoxyglycosides Bearing Free Hydroxyl Substituents on the Glycosyl Donor. J Org Chem 2022; 87:10768-10790. [PMID: 35921523 DOI: 10.1021/acs.joc.2c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent efforts in the field of carbohydrate chemistry have focused on the site- and stereocontrolled synthesis of O-glycosides derived from acceptors bearing multiple hydroxyl substituents. By comparison, there are few examples of the site-selective synthesis of O-glycosides bearing free hydroxyl substituents on the donor reagent. Here, we report the application of an umpolung glycosylation strategy to the synthesis of O-glycosides derived from donors bearing free hydroxyl substituents. The reaction proceeds via prior deprotonation of one or more free hydroxyl groups on a thiophenylglycoside donor, reductive lithiation to generate an anomeric anion intermediate, and addition of this anion to an alkyl 2-(2-methyltetrahydropyranyl) peroxide. By this approach, α-linked glycosides were obtained in 39-84% yields and with >50:1 α/β selectivities. In many instances, β-linked products could be obtained by thermal equilibration of the anomeric anion intermediate (selectivities = 3.8-8:1 β/α; yields = 33-68%). The strategy is applicable to polyhydroxyl donors bearing up to three free hydroxyl groups, N-acylated carbohydrates, and the single-flask syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Kevin M Hoang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Xiaoying Zheng
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Wang Z, Enotarpi J, Buffi G, Pezzicoli A, Gstöttner CJ, Nicolardi S, Balducci E, Fabbrini M, Romano MR, van der Marel GA, del Bino L, Adamo R, Codée JDC. Chemical Synthesis and Immunological Evaluation of Fragments of the Multiantennary Group-Specific Polysaccharide of Group B Streptococcus. JACS AU 2022; 2:1724-1735. [PMID: 35911445 PMCID: PMC9327088 DOI: 10.1021/jacsau.2c00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine. The GBC is a highly complex multiantennary structure, composed of rhamnose rich oligosaccharides interspaced with glucitol phosphates. We here report the development of a convergent approach to assemble a pentamer, octamer, and tridecamer fragment of the termini of the antennae. Phosphoramidite chemistry was used to fuse the pentamer and octamer fragments to deliver the 13-mer GBC oligosaccharide. Nuclear magnetic resonance spectroscopy of the generated fragments confirmed the structures of the naturally occurring polysaccharide. The fragments were used to generate model glycoconjugate vaccine by coupling with CRM197. Immunization of mice delivered sera that was shown to be capable of recognizing different GBS strains. The antibodies raised using the 13-mer conjugate were shown to recognize the bacteria best and the serum raised against this GBC fragment-mediated opsonophagocytic killing best, but in a capsule dependent manner. Overall, the GBC 13-mer was identified to be a highly promising antigen for incorporation into future (multicomponent) anti-GBS vaccines.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacopo Enotarpi
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Giada Buffi
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | | | - Christoph J. Gstöttner
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | - Roberto Adamo
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
10
|
Zhang H, Wang X, Meng Y, Yang X, Zhao Q, Gao J. Total Synthesis of the Tetrasaccharide Haptens of Vibrio vulnificus MO6-24 and BO62316 and Immunological Evaluation of Their Protein Conjugates. JACS AU 2022; 2:97-108. [PMID: 35098226 PMCID: PMC8790746 DOI: 10.1021/jacsau.1c00190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 05/15/2023]
Abstract
Vibrio vulnificus is a human pathogen that can cause fatal septicemia and necrotizing infections with a high lethal rate exceeding 50%. V. vulnificus MO6-24 and BO62316 are two predominant virulent strains associated with approximately one-third of the clinical infections. The capsular polysaccharides (CPSs) of V. vulnificus consist of several structurally unique sugars and are excellent targets for developing effective glycoconjugate vaccines. This article describes the first total synthesis of the challenging tetrasaccharide repeating units of V. vulnificus MO6-24 and BO62316 CPSs. A key feature of this synthesis was the assembly of the tetrasaccharide skeleton using a 3,4-branched trisaccharide as the glycosyl donor. A modified TEMPO/BAIB oxidation protocol was developed to directly convert α-d-GalN into α-d-GalAN in not only disaccharides but also tri- and tetrasaccharides. The synthetic haptens were covalently coupled with CRM197 carrier protein via a bifunctional linker. Preliminary immunological studies of the resultant glycoconjugates in mice revealed their high efficacy to induce robust T-cell-dependent immune responses, and the IgG antibodies elicited by each glycoconjugate showed weak cross-reactivity with the other synthetic tetrasaccharide.
Collapse
Affiliation(s)
- Han Zhang
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| | - Xiaohan Wang
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| | - Youhui Meng
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| | - Xiaoyu Yang
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| | - Qingpeng Zhao
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| | - Jian Gao
- National Glycoengineering
Research Center, Shandong Key Laboratory of Carbohydrate Chemistry
and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation
of Carbohydrate-based Medicine, Shandong
University, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Semi- and fully synthetic carbohydrate vaccines against pathogenic bacteria: recent developments. Biochem Soc Trans 2021; 49:2411-2429. [PMID: 34495299 PMCID: PMC8589429 DOI: 10.1042/bst20210766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.
Collapse
|
12
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
13
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
14
|
Manna T, Misra AK. Synthesis of the sialylated pentasaccharide repeating unit of the capsular polysaccharide of Streptococcus group B type VI. Carbohydr Res 2021; 502:108294. [PMID: 33765475 DOI: 10.1016/j.carres.2021.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
An efficient synthetic strategy has been developed for the synthesis of the sialic acid containing pentasaccharide repeating unit of the cell wall O-antigen of Streptococcus group B type VI strain involving stereoselective α-glycosylation of sialic acid thioglycoside derivative. Stereoselective glycosylation of glycosyl trichloroacetimidate derivatives and thioglycosides were carried out using perchloric acid supported over silica (HClO4-SiO2) as a solid acid catalyst. A panel of sialic acid donors has been screened for achieving satisfactory yield and stereochemical outcome of the glycosylation reaction.
Collapse
Affiliation(s)
- Tapasi Manna
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
15
|
Qin X, Ye X. Donor
Preactivation‐Based
Glycosylation: An Efficient Strategy for Glycan Synthesis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
16
|
Liao G, Guo J, Yang D, Zhou Z, Liu Z, Guo Z. Synthesis of a dimer of the repeating unit of type Ia Group B Streptococcus extracellular capsular polysaccharide and immunological evaluations of related protein conjugates. Org Chem Front 2019; 6:2833-2838. [PMID: 32274071 PMCID: PMC7144420 DOI: 10.1039/c9qo00486f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type Ia group B Streptococcus (GBS) is one of the major causes of fatal infections in neonates. Its extracellular capsular polysaccharide (CPS) is a useful target for the development of anti-type Ia GBS vaccines. To explore the structure-activity relationships of type Ia GBS CPS and design more effective vaccines, a dimer of the branched pentasaccharide repeating unit of this CPS was synthesized by a highly convergent strategy highlighted by constructing the key intermediate via one-pot iterative glycosylation and imposing two side chains in one step via dual glycosylation. This represented the first total synthesis of a dimer of the repeating unit of any GBS CPS reported so far and the strategy should be applicable to higher oligomers of this repeating unit. The synthetic dimer and its monomeric analog were coupled with CRM197 carrier protein to generate conjugates that were evaluated in mice. Immunological results revealed that both carbohydrate antigens could induce robust total and IgG antibody responses and the elicited antibodies were cross-reactive with both carbohydrate antigens. It was concluded that both the monomeric and the dimeric repeating units may be employed as haptens for anti-type Ia GBS vaccine development.
Collapse
Affiliation(s)
- Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jiatong Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhifang Zhou
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Key Laboratory of Carbohydrate Chemistry & Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Zhang H, Shao L, Wang X, Zhang Y, Guo Z, Gao J. One-Pot Synthesis of the Repeating Unit of Type VII Group B Streptococcus Polysaccharide and the Dimer. Org Lett 2019; 21:2374-2377. [DOI: 10.1021/acs.orglett.9b00653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Liming Shao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yanxin Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
18
|
Zhang H, Zhou S, Zhao Y, Gao J. Chemical synthesis of the dimeric repeating unit of type Ia group BStreptococcuscapsular polysaccharide. Org Biomol Chem 2019; 17:5839-5848. [DOI: 10.1039/c9ob01024f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesis of the dimeric repeating unit of type Ia GBS CPS containing two sialotrisaccharide side chains and adjacent 3,4-di-branched Gal motifs was achieved.
Collapse
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Ying Zhao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|
19
|
Zhang Y, Zhou S, Wang X, Zhang H, Guo Z, Gao J. A new method for α-specific glucosylation and its application to the one-pot synthesis of a branched α-glucan. Org Chem Front 2019. [DOI: 10.1039/c8qo01177j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new and highly efficient α-specific glucosylation method based on the synergistic α-directing effects of a TolSCl/AgOTf promoter system and the steric β-shielding or the remote participation of protecting groups at the donor 6-O-position.
Collapse
Affiliation(s)
- Yanxin Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Xiaohan Wang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|
20
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
21
|
Zhang Y, Zhao FL, Luo T, Pei Z, Dong H. Regio/Stereoselective Glycosylation of Diol and Polyol Acceptors in Efficient Synthesis of Neu5Ac-α-2,3-LacNPhth Trisaccharide. Chem Asian J 2018; 14:223-234. [DOI: 10.1002/asia.201801486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry&Chemical Engineering; Huazhong University of Science&Technology; Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Fu-Long Zhao
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry&Chemical Engineering; Huazhong University of Science&Technology; Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Tao Luo
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry&Chemical Engineering; Huazhong University of Science&Technology; Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Zhichao Pei
- College of Chemistry and Pharmacy; Northwest A&F University; Yangling 712100 Shaanxi P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry&Chemical Engineering; Huazhong University of Science&Technology; Luoyu Road 1037 Wuhan 430074 P. R. China
| |
Collapse
|
22
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
23
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
24
|
Shao L, Zhang H, Li Y, Gu G, Cai F, Guo Z, Gao J. Chemical Synthesis of the Repeating Unit of Type II Group B Streptococcus Capsular Polysaccharide. J Org Chem 2018; 83:5920-5930. [DOI: 10.1021/acs.joc.8b00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Liming Shao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Yaoyao Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Feng Cai
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
25
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
26
|
Li Q, Guo Z. Synthesis of the Cancer-Associated KH-1 Antigen by Block Assembly of Its Backbone Structure Followed by One-Step Grafting of Three Fucose Residues. Org Lett 2017; 19:6558-6561. [PMID: 29185761 PMCID: PMC6000830 DOI: 10.1021/acs.orglett.7b03275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A robust, convergent, and efficient strategy was developed for the synthesis of the nonasaccharide cancer antigen KH-1. This strategy featured a one-pot block assembly of the linear hexasaccharide backbone using three disaccharides followed by grafting of three fucose residues onto the backbone in one step.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
27
|
Yang W, Yang B, Ramadan S, Huang X. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly. Beilstein J Org Chem 2017; 13:2094-2114. [PMID: 29062430 PMCID: PMC5647719 DOI: 10.3762/bjoc.13.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Xu H, Zhang Y, Dong H, Lu Y, Pei Y, Pei Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Abstract
Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The study of bacterial polysaccharide biosynthesis aids the development of in vitro hazard-free oligosaccharide production. Novel site-selective conjugation methods contribute toward deciphering the role of conjugation sites in the immunogenicity of glycoconjugates and prove to be particularly useful when glycans are conjugated to protein serving as carrier and antigen. The orthogonal incorporation of two different carbohydrate haptens enables the reduction of vaccine components. Finally, coordinated conjugation of glycans and small molecule immunopotentiators supports simplification of vaccine formulation and localization of adjuvant. Synergistic advancement of these areas, combined with competitive manufacturing processes, will contribute to a better understanding of the features guiding the immunological activity of glycoconjugates and, ultimately, to the design of improved, safer vaccines.
Collapse
|