1
|
Zhang CJ, Sun Y, Gong J, Zhang H, Liu ZZ, Wang F, Chen JX, Qu JP, Kang YB. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations. Angew Chem Int Ed Engl 2025; 64:e202415496. [PMID: 39494965 DOI: 10.1002/anie.202415496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/05/2024]
Abstract
We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the β-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,β-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Zhen Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jin-Xiang Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Wang YP, Guo ZZ, Qu JP, Kang YB. Photoreductive N-N Homocoupling Catalyzed by a Superphotoreductant. J Org Chem 2024; 89:16804-16808. [PMID: 39453715 DOI: 10.1021/acs.joc.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Azines are valuable synthons or target molecules in organic synthesis. In this work, we report that CBZ6 could work as a photoreductive catalyst for the N-N homocoupling of oximes in high efficiency. This therefore enabled convenient access to a large variety of azines from the corresponding aryl and alkyl ketones, as well as aryl aldehydes in up to 99% yield. 2,4-Dinitrophenoxyl was used as the recyclable auxiliary and the CBZ6 photocatalyst could also be recycled. These together with the low catalyst loading (2 mol % of CBZ6), the short reaction time (4 h), and the nontoxic DMSO solvent make the current process a sustainable and practical alternative to the classic methods.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Zhen Guo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zhang H, Chen JX, Qu JP, Kang YB. Photocatalytic low-temperature defluorination of PFASs. Nature 2024; 635:610-617. [PMID: 39567791 DOI: 10.1038/s41586-024-08179-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1-5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40-60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the 'forever chemicals' PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.
Collapse
Affiliation(s)
- Hao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jin-Xiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Cen FT, Sun Y, Qu JP, Kang YB. Photocatalytic Redox-Neutral Alkoxyacylation of Alkenes. Org Lett 2023; 25:8997-9001. [PMID: 38060991 DOI: 10.1021/acs.orglett.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
β-Alkoxyketones are important building blocks in organic synthesis. By utilizing CBZ6, with an oxidative potential of -2.16 V (vs the saturated calomel electrode), as a redox-neutral photocatalyst, alkoxyacylation of olefins was accomplished under the irradiation of visible light via a cationic intermediate. It involves the addition of an acyl radical to olefin to form a radical intermediate and the following oxidation of the radical intermediate to the benzyl cationic intermediate that is captured by alkoxy anions. This process provides concise and practical access to the β-functionalized ketones.
Collapse
Affiliation(s)
- Fu-Tong Cen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Cui XC, Zhang H, Zhang H, Wang YP, Qu JP, Kang YB. Synthesis of α-Hydroxyl and α-Amino Pyridinyl Esters via Photoreductive Dual Radical Cross-Coupling. Org Lett 2023; 25:7198-7203. [PMID: 37747960 DOI: 10.1021/acs.orglett.3c02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A method for the synthesis of α-hydroxyl and α-amino pyridinyl esters via photoreductive dual radical cross-coupling catalyzed by the super-organoreductant CBZ6 has been developed. A wide range of 2-pyridinylation and 4-pyridinylation of either α-ketoesters or imine derivatives has been achieved. The applications in the synthesis of pyridinyl amino-hydroxyl acids as well as a new chiral oxazoline ligand have also been accomplished.
Collapse
Affiliation(s)
- Xian-Chao Cui
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hu Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ping Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Wang SD, Yang B, Zhang H, Qu JP, Kang YB. Reductive Cleavage of C-X or N-S Bonds Catalyzed by Super Organoreductant CBZ6. Org Lett 2023; 25:816-820. [PMID: 36693162 DOI: 10.1021/acs.orglett.2c04346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reductive cleavage of C(Ar)-X bonds is the key step for the cross coupling of Ar-X with other groups. In this work, under the irradiation of 407 nm LEDs using sodium formate as reductant and thiol as hydrogen atom transfer agent, a variety of (hetero)aryl chlorides, bromides, and iodides could be reduced to corresponding (hetero)arenes. The key intermediates, aryl radicals, could be trapped by either hydrogen, phosphite, or borates. The same reduction conditions can be extended to the deprotection of sulfonamides.
Collapse
Affiliation(s)
- Si-Da Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Li X, Shui Y, Shen P, Wang YP, Zhang C, Feng C. A novel type of radical-addition-induced β-fragmentation and ensuing remote functionalization. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Diastereoselective Synthesis of Polysubstituted Pyrrolidines/Dihydropyrroles: Photochemical Properties of Polysubstituted Pyrroles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Abstract
A recyclable organic photoreductant (1 mol % CBZ6)-catalyzed reductive (pinacol) coupling of aldehydes, ketones, and imines has been developed. Irradiated by purple light (407 nm) using triethylamine as an electron donor, a variety of 1,2-diols and 1,2-diamines could be prepared. The oxidation potential of the excited state of CBZ6 is established as -1.92 V (vs saturated calomel electrode (SCE)). The relative high reductive potential enables the reductive coupling of carbonyl compounds and their derivatives. CBZ6 can be prepared in gram scale and is acid/base- or air-stable. It could be applied in large-scale photoreductive synthesis and recovered in high yield after the reaction.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Philkhana SC, Badmus FO, Dos Reis IC, Kartika R. Recent Advancements in Pyrrole Synthesis. SYNTHESIS-STUTTGART 2021; 53:1531-1555. [PMID: 34366491 PMCID: PMC8340853 DOI: 10.1055/s-0040-1706713] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review article features selected examples on the synthesis of functionalized pyrroles that were reported between 2014 and 2019. Pyrrole is an important nitrogen-containing aromatic heterocycle that can be found in numerous compounds of biological and material significance. Given its vast importance, pyrrole continues to be an attractive target for the development of new synthetic reactions. The contents of this article are organized by the starting materials, which can be broadly classified into four different types: substrates bearing π-systems, substrates bearing carbonyl and other polar groups, and substrates bearing heterocyclic motifs. Brief discussions on plausible reaction mechanisms for most transformations are also presented.
Collapse
Affiliation(s)
- Satish Chandra Philkhana
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Fatimat O Badmus
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Isaac C Dos Reis
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Rendy Kartika
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Singh Chouhan P, Singh D, Purohit P, Sharma G, Kant R, Shukla SK, Chauhan PMS. PPh
3
Catalyzed Post‐Transformation Ugi‐4CR Intramolecular Cyclization Reaction: One‐Pot Synthesis of Functionalized Spiropyrrolidinochromanones. ChemistrySelect 2021. [DOI: 10.1002/slct.202003936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pradeep Singh Chouhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Deepti Singh
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Pooja Purohit
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
| | - Gaurav Sharma
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
| | - Sanjeev K. Shukla
- Sophisticated Analytical Instrument Facility Division CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
12
|
Jang HC, Sin KR, Paek HR, Jang YM, Jong SH. Phosphine-Catalyzed Sequential Michael Addition between
α-Aminonitriles and Methyl Acrylate for Cyclization: Synthesis of N-Aryl-Substituted Pyrrolidines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Taha AG, Elboray EE, Kobayashi Y, Furuta T, Abbas-Temirek HH, Aly MF. Nitro-Substituted Benzaldehydes in the Generation of Azomethine Ylides and Retro-1,3-Dipolar Cycloadditions. J Org Chem 2021; 86:547-558. [PMID: 33283511 DOI: 10.1021/acs.joc.0c02241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,3-Dipolar cycloaddition of 2- and 3-nitrobenzaldehydes with 2-aminomethylpyridine and ethyl (2E)-2-cyano-3-(4-nitrophenyl)prop-2-enoate yielded endo-cycloadducts as the sole products under various reaction conditions. Fortuitously, 4-nitrobenzaldehyde behaved differently in three- and four-component cascades to produce a mixture of endo- and exo'-cycloadducts. This reaction is solvent- and temperature-dependent, and consequently, both the endo- and exo'-cycloadducts were synthesized in an excellent regio-, stereo-, and chemoselective fashion. Retro-1,3-dipolar cycloadditions of the endo-cycloadducts were conducted under mild reaction conditions, and the generated syn-dipoles were stereomutated into anti-dipoles which recycloadded with the dipolarophiles to provide the exo'-cycloadducts. Mechanistic studies were carried out to support the proposed mechanisms. Unprecedentedly, particular arylidene scaffolds participated as aldehyde or activated methylene precursors. Density functional theory calculations were performed to shed light on the importance of AcOH in the generation and isomerization of dipoles and to explain the high selectivity and the possibility of retro-cycloaddition.
Collapse
Affiliation(s)
- Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Elghareeb E Elboray
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt.,Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | | | - Moustafa F Aly
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
14
|
Luan ZH, Qu JP, Kang YB. Discovery of Oxygen α-Nucleophilic Addition to α,β-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant. J Am Chem Soc 2020; 142:20942-20947. [DOI: 10.1021/jacs.0c10707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zi-Hong Luan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Lin ZQ, Li CD, Su JY, Niu WJ, Gao JR, Li YJ. Sequential Cu(II)-promoted oxidation/[3 + 2] cycloaddition/aromatization tandem reaction for the synthesis of 2-substituted benzo[f]isoindole-4,9-dione. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient method for the synthesis of 2-substituted benzo[f]isoindole-4,9-dione derivatives from N-substituted iminodiacetates and quinones via a Cu(II)-promoted oxidation/[3 + 2] cycloaddition/aromatization tandem reaction was reported. This tandem reaction uses a wide range of N-substituted iminodiacetate derivatives that contain the chain-alkyl, cycloalkyl, and aryl group on the N-atom. Based on optimized reaction conditions, the desired product of 2-substituted benzo[f]isoindole-4,9-diones was obtained in moderate to excellent yields. Taken together, the promising results of this research would provide an especially efficient strategy to synthesize polysubstituted pyrroles from easy available starting materials and promoted by cheaper Cu(OAc)2.
Collapse
Affiliation(s)
- Zhang-qi Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao-dong Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun-yi Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-jie Niu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-rong Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-jin Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
16
|
Huang W, Chen S, Chen Z, Yue M, Li M, Gu Y. Synthesis of Multisubstituted Pyrroles from Enolizable Aldehydes and Primary Amines Promoted by Iodine. J Org Chem 2019; 84:5655-5666. [DOI: 10.1021/acs.joc.9b00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wenbo Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shaomin Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Zhiyan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Meie Yue
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Minghao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, 430074 Wuhan, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, 730000 Lanzhou, China
| |
Collapse
|
17
|
Christodoulou MS, Giofrè S, Broggini G, Mazza A, Sala R, Beccalli EM. Divergent Palladium- and Platinum-Catalyzed Intramolecular Hydroamination/Hydroarylation of O
-Propargyl-2-aminophenols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michael S. Christodoulou
- DISFARM; Sezione di Chimica Generale e Organica “A. Marchesini”; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Sabrina Giofrè
- DISFARM; Sezione di Chimica Generale e Organica “A. Marchesini”; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia; Università degli Studi dell′Insubria; Via Valleggio 9 22100 Como Italy
| | - Alberto Mazza
- DISFARM; Sezione di Chimica Generale e Organica “A. Marchesini”; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Roberto Sala
- Dipartimento di Scienza e Alta Tecnologia; Università degli Studi dell′Insubria; Via Valleggio 9 22100 Como Italy
| | - Egle M. Beccalli
- DISFARM; Sezione di Chimica Generale e Organica “A. Marchesini”; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| |
Collapse
|
18
|
Ding TH, Xiao ZF, Qu JP, Kang YB. Synthesis of Highly Functionalized Indoles and Indolones via Selectivity-Switchable Olefinations. J Org Chem 2018; 83:2467-2472. [PMID: 29377692 DOI: 10.1021/acs.joc.7b03158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly functionalized indoles and indolones were prepared via selectivity-switchable mono- or diolefinations. The Julia olefination of the products followed by a Brønsted acid-prompted cyclization afforded indolones, whereas the indoles were obtained by a sequential Wittig olefination and electrocyclization. This method opens divergent access to highly functionalized nitrogen-containing bicyclic or tricyclic heterocycles.
Collapse
Affiliation(s)
- Ting-Hui Ding
- Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Zu-Feng Xiao
- Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Kishii N, Shimadu M, Maruyama S, Tou S, Sasaki I, Sugimura H. Synthesis of polyfunctionalized pyrroles bearing C-2 α-azido side-chains and displacement of the α-azido group by various nucleophiles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Kumar Thota G, Tamilarasan D, Balamurugan R. Synthesis of Highly Functionalized Pyrrolidine Derivatives from Easily Accessible Diethyl (E
)-4-Oxohex-2-enedioate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ganesh Kumar Thota
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| | | | - Rengarajan Balamurugan
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| |
Collapse
|