1
|
Cazzaniga G, Tresoldi A, Gelain A, Meneghetti F, Mori M, Villa S. Eco-Friendly Bio-Based Solvents for the Acetylation of the Amino Group of Amino Acids. Chem Biodivers 2024; 21:e202301729. [PMID: 38241063 DOI: 10.1002/cbdv.202301729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Nature-derived products, like juices and peel extracts of fruits and vegetables, have emerged in recent years as interesting and sustainable alternatives to traditional solvents in several synthetic applications. Herein, we present a green and fast method for the N-acetylation of amino acids, using several bio-based solvents (vinegar, tomato/kiwi/apple peel extracts, lemon juice, etc.). The high reactivity of the amino group is often a limitation in synthetic processes, making its protection a necessary step to achieve pure products and limit side reactions. Therefore, versatile, time-efficient procedures, minimal purification efforts, and good yields are desirable features for these transformations. Our new method meets all these criteria, offering a valuable and eco-friendly alternative to traditional approaches. In detail, we managed to obtain comparable yields to established setups, while improving safety and reducing the environmental impact of the overall process. Most notably, the milder conditions made it possible to avoid the use of running water (saving about 250 L/reaction) and electric-powered cooling devices.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Andrea Tresoldi
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
2
|
Das Adhikari GK, Mohanty SR, Banjare SK, Prusty N, Murmu G, Ravikumar PC. Annulation of Indole-2-Carboxamides with Bicycloalkenes Catalyzed by Ru(II) at Room Temperature: An Easy Access to β-Carboline-1-one Derivatives under Mild Conditions. J Org Chem 2023; 88:952-959. [PMID: 36606375 DOI: 10.1021/acs.joc.2c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report the annulation of indole-2-carboxamides with bicycloalkenes, to synthesize β-carboline-1-one derivatives under mild conditions. The commercially available ruthenium catalyst was used for the reaction. This reaction tolerates a wide range of functional groups and affords a good yield of β-carboline-1-one derivatives. A reversible cyclometalation pathway was found to be operative in the mechanistic study.
Collapse
Affiliation(s)
- Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gajiram Murmu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Tu J, Ripa RA, Kelley SP, Harmata M. Intramolecular (4+3) Cycloadditions of Oxidopyridinium Ions: Towards Daphnicyclidin A. Chemistry 2022; 28:e202200370. [PMID: 35612968 DOI: 10.1002/chem.202200370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/15/2022]
Abstract
N-alkylation of 5-hydroxynicotinic acid esters with electrophiles containing diene functionality produces salts that undergo intramolecular (4+3) cycloaddition reactions upon heating in the presence of base. Initial studies used a three-carbon tether to join the pyridinium ion and diene, revealing some aspects of the inherent selectivity of the reaction with such substrates. Much more challenging was the synthesis of related species possessing only a two-carbon tether. Nevertheless, the cycloaddition of such compounds was successful, leading directly to the ABC ring system of the alkaloid daphnicyclidin A.
Collapse
Affiliation(s)
- Jianzhuo Tu
- Department of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, Missouri, 65211, USA
| | - Rawshan A Ripa
- Department of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, Missouri, 65211, USA
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, Missouri, 65211, USA
| | - Michael Harmata
- Department of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, Missouri, 65211, USA
| |
Collapse
|
4
|
Pawar AP, Yadav J, Dolas AJ, Iype E, Rangan K, Kumar I. Catalyst-free direct regiospecific multicomponent synthesis of C3-functionalized pyrroles. Org Biomol Chem 2022; 20:5747-5758. [PMID: 35775588 DOI: 10.1039/d2ob00961g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An operationally simple catalyst-free protocol for the direct regiospecific synthesis of β-(C3)-substituted pyrroles has been developed. The enamine intermediate, in situ generated from succinaldehyde and a primary amine, was trapped with activated carbonyls before the Paal-Knorr reaction in a direct multicomponent "just-mix" fashion to furnish pyrroles with overall good yields. Several C3-substituted N-alkyl/aryl/H pyrroles have been produced under open-flask conditions with high atom economy and avoiding protection-deprotection chemistry.
Collapse
Affiliation(s)
- Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Secunderabad, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
5
|
Das Adhikari GK, Pati BV, Nanda T, Biswal P, Banjare SK, Ravikumar PC. Co(II)-Catalyzed C-H/N-H Annulation of Cyclic Alkenes with Indole-2-carboxamides at Room Temperature: One-Step Access to β-Carboline-1-one Derivatives. J Org Chem 2022; 87:4438-4448. [PMID: 35226810 DOI: 10.1021/acs.joc.1c02716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein a cobalt-catalyzed 8-aminoquinoline-directed highly regio- and stereoselective C-H/N-H activation annulation of indole-2-carboxamides with 1,2-dihydronaphthalene for the synthesis of β-carboline-1-one derivatives at room temperature. A cheaper and commercially available cobalt catalyst has been used for this transformation. The protocol tolerates a wide range of functionalities, affording β-carboline-1-one derivatives in good yields. An initial mechanistic study revealed a reversible cyclometalation to be operative.
Collapse
Affiliation(s)
- Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Pragati Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
6
|
Liu J, Xiao X, Lai Y, Zhang Z. Recent advances in transition metal-catalyzed heteroannulative difunctionalization of alkenes via C-H activation for the synthesis of heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00081d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are the fundamental structural motifs distributed in natural products, pharmaceuticals and biologically active compounds. Thus, there is increasing interest in the development of novel synthetic strategies for the...
Collapse
|
7
|
Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Recent Advances in Functionalization of Pyrroles and their Translational Potential. CHEM REC 2021; 21:715-780. [PMID: 33650751 DOI: 10.1002/tcr.202100010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Mandeep Kaur Hunjan
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Surabhi Panday
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Anjali Gupta
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S., Nagar, 140306, Punjab, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| | - Joydev K Laha
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| |
Collapse
|
8
|
Kim TK, Youn SW. Pd‐Catalyzed
Asymmetric Synthesis of 3,
4‐Dihydroisoquinolinones
From
N
‐Ts‐Benzamides
and 1,
3‐Dienes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tae Kyun Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Science Hanyang University Seoul 04763 Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Science Hanyang University Seoul 04763 Korea
| |
Collapse
|
9
|
Sun M, Chen W, Wu H, Xia X, Yang J, Wang L, Shen G, Wang Z. Vinylogous Elimination/C-H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Org Lett 2020; 22:8313-8319. [PMID: 33044826 DOI: 10.1021/acs.orglett.0c02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A palladium-catalyzed cascade reaction of β'-allenoate adducts with aryl/heteroaryl carboxamides through a vinylogous elimination/C-H functionalization/intramolecular allylation reaction sequence has been developed with high Z stereoselectivity. Various ring-fused dihydropyridinones bearing an α,β-unsaturated ester substituent are obtained. It is the first example of application of the allenoate adducts to C-H functionalization annulations as practical precursors of hard-to-get functionalized electron-deficient 1,3-butadienes. Using air as the terminal oxidant also shows a great advantage in environmental friendliness.
Collapse
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
10
|
Beccalli EM, Christodoulou MS, Foschi F, Giofrè S. Pd-Catalyzed Domino Reactions Involving Alkenes To Access Substituted Indole Derivatives. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Palladium-catalyzed domino reactions are advanced tools in achieving various nitrogen-containing heterocycles in an efficient and economical manner due to the reduced number of steps in the process. This review highlights recent advances in domino processes aimed at the synthesis of indole derivatives and polycyclic systems containing the indole nucleus in intra/intra- or intra/intermolecular reactions. In particular, we consider domino processes that involve a double bond in a step of the sequence, which allow the issue of regioselectivity in the cyclization to be faced and overcome. The different sections in this review focus on the synthesis of the indole nucleus and functionalization of the scaffold starting from different substrates that have been identified as activated starting materials, which involve a halogenated moiety or unactivated unsaturated systems. In the former case, the reaction is under Pd(0) catalysis, and in the second case a Pd(II) catalytic species is required and then an oxidant is necessary to reconvert the Pd(0) into the active Pd(II) species. On the other hand, the second method has the advantage that it uses easy available and inexpensive substrates.1 Introduction2 Indole Scaffold Synthesis2.1 Activated Substrates2.2 Unactivated Substrates3 Functionalization of Indole Scaffold3.1 Activated Substrates3.2 Unactivated Substrates4 Conclusions
Collapse
Affiliation(s)
- Egle M. Beccalli
- DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano
| | - Michael S. Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano
| | - Francesca Foschi
- Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria
| | - Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica ‘A. Marchesini’ Università degli Studi di Milano
| |
Collapse
|
11
|
Li Z, Mayer RJ, Ofial AR, Mayr H. From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. J Am Chem Soc 2020; 142:8383-8402. [DOI: 10.1021/jacs.0c01960] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Li
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Robert J. Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
12
|
Sun M, Chen W, Xia X, Shen G, Ma Y, Yang J, Ding H, Wang Z. Palladium-Catalyzed Tandem Dehydrogenative [4 + 2] Annulation of Terminal Olefins with N-Sulfonyl Amides via C–H Activations. Org Lett 2020; 22:3229-3233. [DOI: 10.1021/acs.orglett.0c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
13
|
Sun M, Wu H, Xia X, Chen W, Wang Z, Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J Org Chem 2019; 84:12835-12847. [DOI: 10.1021/acs.joc.9b01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
14
|
Zhang T, Shen HC, Xu JC, Fan T, Han ZY, Gong LZ. Pd(II)-Catalyzed Asymmetric Oxidative Annulation of N-Alkoxyheteroaryl Amides and 1,3-Dienes. Org Lett 2019; 21:2048-2051. [DOI: 10.1021/acs.orglett.9b00216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jia-Cheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tao Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
15
|
Youn SW, Ko TY, Kim YH, Kim YA. Pd(II)/Cu(II)-Catalyzed Regio- and Stereoselective Synthesis of (E)-3-Arylmethyleneisoindolin-1-ones Using Air as the Terminal Oxidant. Org Lett 2018; 20:7869-7874. [DOI: 10.1021/acs.orglett.8b03409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yun Ah Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Glaisyer EL, Watt MS, Booker-Milburn KI. Pd(II)-Catalyzed [4 + 2] Heterocyclization Sequence for Polyheterocycle Generation. Org Lett 2018; 20:5877-5880. [DOI: 10.1021/acs.orglett.8b02543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Michael S. Watt
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | |
Collapse
|
17
|
Shen HC, Wu YF, Zhang Y, Fan LF, Han ZY, Gong LZ. Palladium-Catalyzed Asymmetric Aminohydroxylation of 1,3-Dienes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Yu-Feng Wu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
18
|
Shen HC, Wu YF, Zhang Y, Fan LF, Han ZY, Gong LZ. Palladium-Catalyzed Asymmetric Aminohydroxylation of 1,3-Dienes. Angew Chem Int Ed Engl 2018; 57:2372-2376. [DOI: 10.1002/anie.201712350] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Yu-Feng Wu
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
19
|
Chen SS, Wu MS, Han ZY. Palladium-Catalyzed Cascade sp 2 C-H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines. Angew Chem Int Ed Engl 2017; 56:6641-6645. [PMID: 28467624 DOI: 10.1002/anie.201702745] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 11/10/2022]
Abstract
A chiral PdII -catalyzed cascade sp2 C-H functionalization/intramolecular asymmetric allylation reaction is reported. A new chiral sulfoxide-oxazoline (SOX) ligand bearing single chiral center on the sulfur was identified as the optimal ligand for the reaction, being efficient both in the C-H cleavage step and the stereocontrol of the allylation step. The broad scope of this method with respect to aryl ureas and 1,3-dienes enables the rapid construction of valuable chiral indoline derivatives with high yields and enantioselectivities (up to 99 % yield, up to 95:5 e.r.).
Collapse
Affiliation(s)
- Shu-Sen Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Song Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Yong Han
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Chen SS, Wu MS, Han ZY. Palladium-Catalyzed Cascade sp2C−H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shu-Sen Chen
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Min-Song Wu
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Zhi-Yong Han
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
21
|
Youn SW, Yoo HJ. One-Pot Sequential N-Heterocyclic Carbene/Rhodium(III) Catalysis: Synthesis of Fused Polycyclic Isocoumarins. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Material Design; Hanyang University; Seoul 04763 Korea
| | - Huen Ji Yoo
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Material Design; Hanyang University; Seoul 04763 Korea
| |
Collapse
|
22
|
George J, Kim HY, Oh K. Substituted Pyrrololactams via Ring Expansion of Spiro-2H-pyrroles from Intermolecular Alkyne-Isocyanide Click Reactions. Org Lett 2017; 19:628-631. [PMID: 28107022 DOI: 10.1021/acs.orglett.6b03786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The facile synthesis of 6- to 8-membered pyrrololactams has been developed using a ring expansion of spiro-2H-pyrroles, the products of intermolecular alkyne-isocyanide click reactions. The key to successful ring expansion of spiro-2H-pyrroles to pyrrololactams is the enforced orbital overlap between the internal alkene and the amide carbonyl group through the conformationally locked bicyclic structures. The newly disclosed α-isocyano lactams, substrates for click reactions, should find their utility in the synthesis of pharmaceutically important heterocyclic compounds.
Collapse
Affiliation(s)
- Jimil George
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|