1
|
Hao B, Li R, Wang P, Wang Y, Li X, Xu P, Zhang Q, Zhu X, Zhang X, Zhu Y. Minimally Protected and Stereoselective O-Glycosylation of Carboxylic Acid Allows Rapid Access to α-1- O- and 2- O-Acyl Glycosides. J Am Chem Soc 2025; 147:13744-13753. [PMID: 40164973 DOI: 10.1021/jacs.5c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We herein reported a catalytic, minimally protected, and highly α-stereoselective glycosylation protocol using carboxylic acid as an acceptor and glycosyl 8-alkynyl-1-naphthoate as a donor, enabling efficient access to unprotected α-1-O- and 2-O-acyl glycosides. This method demonstrates excellent functional compatibility and scope generality, allowing for the glycosylation of a wide range of complex carboxylic acids. Notably, we successfully synthesized two natural products, α-penta-O-galloyl-d-glucopyranose and nyctanthesin A, using this protocol. Mechanistic studies highlighted the crucial role of the 1-O ester functionality in ensuring chemoselectivity and the important contribution of the 2-O functionality in facilitating the reaction.
Collapse
Affiliation(s)
- Bangxing Hao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Zhuhai Campus, Zunyi Medical University, Zhuhai 519090, China
| | - Rongxia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Panpan Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Zhuhai Campus, Zunyi Medical University, Zhuhai 519090, China
| | - Yingjie Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolong Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peifan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Zhuhai Campus, Zunyi Medical University, Zhuhai 519090, China
| | - Qian Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xinhao Zhu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaojuan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yugen Zhu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wu J, Jia P, Tang H, Cai D, Tang W. Rh(II) and Chiral Phosphoric Acid Co-catalyzed Selective O-H Insertions for Stereodivergent O-Alkylation of Glycosides. J Am Chem Soc 2025; 147:5871-5878. [PMID: 39930793 PMCID: PMC12016578 DOI: 10.1021/jacs.4c14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Carbohydrates are synthetically challenging molecules with essential biological functions in all living systems. The selective synthesis and modification of carbohydrates are crucial for investigating their biological functions. Controlling chemo-, regio-, and stereoselectivity is a central theme in carbohydrate synthesis. Achieving the full set of stereoisomers of carbohydrate derivatives would significantly enhance the efficiency of building compound libraries for biological studies and drug discovery. However, the selective functionalization of seemingly identical hydroxyl groups in carbohydrates remains a long-standing challenge in organic chemistry. In carbohydrate synthesis, achieving precise control of both relative configurations in catalyst-controlled reactions that create a new stereocenter presents a significant synthetic challenge. Herein, we developed an efficient method for the stereodivergent O-alkylation of carbohydrate hydroxyl groups via Rh(II)/chiral phosphoric acid-cocatalyzed insertion of metal carbenoids. This system is mild and robust, offering excellent selectivity across a broad range of substrates with high regio- and stereoselectivity. Furthermore, this strategy opens up vast opportunities for stereodivergent synthesis.
Collapse
Affiliation(s)
- Jicheng Wu
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Peijing Jia
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hua Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Deqin Cai
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
3
|
Zhou W, Wu R, Li J, Zhu D, Yu B. A Ligand-Controlled Approach Enabling Gold(I)-Catalyzed Stereoinvertive Glycosylation with Primal Glycosyl ortho-Alkynylbenzoate Donors. J Am Chem Soc 2024; 146:27915-27924. [PMID: 39314057 DOI: 10.1021/jacs.4c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A diarylurea-containing phosphine ligand-modulated stereoinvertive O-glycosylation with primal furanosyl and pyranosyl ortho-alkynylbenzoate (ABz) donors under gold(I) catalysis is disclosed. Both α- and β-configured glycosides could be obtained from the corresponding stereochemically pure β- and α-glycosyl donors with high yields and good to excellent stereoselectivities, respectively. This method accommodates a variety of glycosyl donors and alcoholic acceptors, leading to both 1,2-cis and 1,2-trans glycosidic linkages, and has been applied to the convenient preparation of a series of linear arabinan glycans. Mechanistic investigations reveal that the counteranion could bridge the diarylurea residue on the phosphine ligand with the alcoholic acceptor via hydrogen bond interactions, thereby permitting stereoinvertive displacement at the anomeric position.
Collapse
Affiliation(s)
- Weiping Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinchan Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Center for Chemical Glycobiology, Zhang jiang Institute for Advanced Study, Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Alom NE, Rani N, Schlegel HB, Nguyen HM. Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis. Org Chem Front 2024; 11:5769-5783. [PMID: 39211000 PMCID: PMC11347974 DOI: 10.1039/d4qo00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Collapse
Affiliation(s)
- Nur-E Alom
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | - Neha Rani
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| |
Collapse
|
5
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
6
|
Agrawal SK, Majhi PK, Goodfellow AS, Tak RK, Cordes DB, McKay AP, Kasten K, Bühl M, Smith AD. Synthesis of Tetra-Substituted 3-Hydroxyphthalide Esters by Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202402909. [PMID: 38713305 DOI: 10.1002/anie.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
A general and highly enantioselective method for the preparation of tetra-substituted 3-hydroxyphthalide esters via isothiourea-catalysed acylative dynamic kinetic resolution (DKR) is reported. Using (2S,3R)-HyperBTM (5 mol %) as the catalyst, the scope and limitations of this methodology have been extensively probed, with high enantioselectivity and good to excellent yields observed (>40 examples, up to 99 %, 99 : 1 er). Substitution of the aromatic core within the 3-hydroxyphthalide skeleton, as well as aliphatic and aromatic substitution at C(3), is readily tolerated. A diverse range of anhydrides, including those from bioactive and pharmaceutically relevant acids, can also be used. The high enantioselectivity observed in this DKR process has been probed computationally, with a key substrate heteroatom donor O⋅⋅⋅acyl-isothiouronium interaction identified through DFT analysis as necessary for enantiodiscrimination.
Collapse
Affiliation(s)
- Shubham K Agrawal
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Pankaj K Majhi
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Raj K Tak
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
7
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Zuo H, Zhang C, Zhang Y, Niu D. Base-Promoted Glycosylation Allows Protecting Group-Free and Stereoselective O-Glycosylation of Carboxylic Acids. Angew Chem Int Ed Engl 2023; 62:e202309887. [PMID: 37590127 DOI: 10.1002/anie.202309887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Chen Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
9
|
|
10
|
Acyl glucuronide reactivity in perspective. Drug Discov Today 2020; 25:1639-1650. [PMID: 32681884 DOI: 10.1016/j.drudis.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Acyl glucuronidation is a common metabolic fate for acidic drugs and their metabolites and, because these metabolites are reactive, they have been linked to adverse drug reactions (ADRs) and drug withdrawals. However, alternative routes of metabolism leading to reactive metabolites (e.g., oxidations and acyl-CoA thioesters) mean that unambiguous proof that acyl glucuronides are toxic is lacking. Here, we review the synthesis and reactivity of these metabolites, and describe the use of molecular modelling and in vitro and in vivo reactivity assessment of acyl glucuronide reactivity. Based on the emerging structure-dependent differences in reactivity and protein adduction methods for risk assessment for acyl glucuronide-forming acid drugs or drug candidates in drug discovery/development are suggested.
Collapse
|
11
|
Bennai N, Chabrier A, Fatthalla MI, Tran C, Yen-Pon E, Belkadi M, Alami M, Grimaud L, Messaoudi S. Reversing Reactivity: Stereoselective Desulfurative 1,2- trans- O-Glycosylation of Anomeric Thiosugars with Carboxylic Acids under Copper or Cobalt Catalysis. J Org Chem 2020; 85:8893-8909. [PMID: 32524820 DOI: 10.1021/acs.joc.0c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have discovered a new mode of reactivity of 1-thiosugars in the presence of Cu(II) or Co(II) for a stereoselective O-glycosylation reaction. The process involves the use of a catalytic amount of Cu(acac)2 or Co(acac)2 and Ag2CO3 as an oxidant in α,α,α-trifluorotoluene. Moreover, this protocol turned out to have a broad scope, allowing the preparation of a wide range of complex substituted O-glycoside esters in good to excellent yields with an exclusive 1,2-trans-selectivity. The late-stage modification of pharmaceuticals by this method was also demonstrated. To obtain a closer insight into the reaction mechanism, cyclic voltammetry was performed.
Collapse
Affiliation(s)
- Nedjwa Bennai
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Amélie Chabrier
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Maha I Fatthalla
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Department of Chemistry, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Expédite Yen-Pon
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Mohamed Belkadi
- Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Mouâd Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université - Ecole Normale Supérieure - CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
12
|
Fallek A, Weiss-Shtofman M, Kramer M, Dobrovetsky R, Portnoy M. Phosphorylation Organocatalysts Highly Active by Design. Org Lett 2020; 22:3722-3727. [PMID: 32319783 DOI: 10.1021/acs.orglett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of nucleophilic organocatalysts for alcohol/phenol phosphorylation was enhanced through attaching oligoether appendages to a benzyl substituent on imidazole- or aminopyridine-based active units, presumably because of stabilizing n-cation interactions of the ethereal oxygens with the positively charged aza-heterocycle in the catalytic intermediates, and was substantially higher than that of known benchmark catalysts for a range of substrates. Density functional theory calculations and the study of analogues having a lower potential for such stabilizing interactions support our hypothesis.
Collapse
Affiliation(s)
- Amit Fallek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Weiss-Shtofman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Kramer
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Liu Y, Majhi PK, Song R, Mou C, Hao L, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Dynamic Kinetic Resolution and Asymmetric Acylation of Hydroxyphthalides and Related Natural Products. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yingguo Liu
- Nanyang Technological University Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Pankaj Kumar Majhi
- Nanyang Technological University Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Runjiang Song
- Nanyang Technological University Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Chengli Mou
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Huaxi District Guiyang Guizhou 550025 China
| | - Lin Hao
- Nanyang Technological University Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Huifang Chai
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Huaxi District Guiyang Guizhou 550025 China
| | - Zhichao Jin
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Nanyang Technological University Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Singapore 637371 Singapore
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| |
Collapse
|
14
|
Liu Y, Majhi PK, Song R, Mou C, Hao L, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Dynamic Kinetic Resolution and Asymmetric Acylation of Hydroxyphthalides and Related Natural Products. Angew Chem Int Ed Engl 2020; 59:3859-3863. [PMID: 31867859 DOI: 10.1002/anie.201912926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Indexed: 01/08/2023]
Abstract
A catalytic dynamic kinetic resolution and asymmetric acylation reaction of hydroxyphthalides is developed. The reaction involves formation of a carbene catalyst derived chiral acyl azolium intermediate that effectively differentiates the two enantiomers of racemic hydroxyphthalides. The method allows quick access to enantiomerically enriched phthalidyl esters with proven applications in medicine. It also enables asymmetric modification of natural products and other functional molecules that contain acetal/ketal groups, such as corollosporine and fimbricalyxlactone C.
Collapse
Affiliation(s)
- Yingguo Liu
- Nanyang Technological University, Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Singapore, 637371, Singapore
| | - Pankaj Kumar Majhi
- Nanyang Technological University, Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Singapore, 637371, Singapore
| | - Runjiang Song
- Nanyang Technological University, Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Singapore, 637371, Singapore
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang, Guizhou, 550025, China
| | - Lin Hao
- Nanyang Technological University, Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Singapore, 637371, Singapore
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang, Guizhou, 550025, China
| | - Zhichao Jin
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Nanyang Technological University, Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Singapore, 637371, Singapore.,Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
15
|
Divergent Synthesis of Dihydropyranone Stereoisomers via N‐Heterocyclic Carbene Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr Res 2019; 474:16-33. [DOI: 10.1016/j.carres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
17
|
Zhang H, Xie M, Qu G, Chang J. Dynamic Kinetic Resolution of α-Purine Substituted Alkanoic Acids: Access to Chiral Acyclic Purine Nucleosides. Org Lett 2019; 21:120-123. [PMID: 30557022 DOI: 10.1021/acs.orglett.8b03555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient route to construct chiral acyclic purine nucleoside analogues via dynamic kinetic resolution of α-purine substituted alkanoic acids is reported. Using ( S)-BTM as the catalyst, diverse chiral acyclic purine nucleoside analogues were obtained in moderate to good yields (up to 93%) and high enantioselectivities (up to 98% ee). Chiral acyclic purine nucleosides could be obtained from the esterified products via reduction reaction, which could then be transferred into Tenofovir analogues.
Collapse
Affiliation(s)
- Huifang Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Mingsheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Guirong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
18
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
19
|
Glazier DA, Schroeder JM, Liu J, Tang W. Organocatalyst-Mediated Dynamic Kinetic Enantioselective Acylation of 2-Chromanols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel A. Glazier
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - John M. Schroeder
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - Jitian Liu
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| |
Collapse
|
20
|
Zhu Z, Glazier DA, Yang D, Tang W. Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6-Tetradeoxy-4-Aminohexopyranosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongpeng Zhu
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemical Sciences; University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Daniel A. Glazier
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - Daoshan Yang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 People's Republic of China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| |
Collapse
|
21
|
Wang HY, Blaszczyk SA, Xiao G, Tang W. Chiral reagents in glycosylation and modification of carbohydrates. Chem Soc Rev 2018; 47:681-701. [PMID: 29206256 DOI: 10.1039/c7cs00432j] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.
Collapse
Affiliation(s)
- Hao-Yuan Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
22
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
23
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017; 57:314-318. [PMID: 29125221 DOI: 10.1002/anie.201710310] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
24
|
Song W, Zheng N. Chiral catalyst-directed site-selective functionalization of hydroxyl groups in carbohydrates. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1390575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wangze Song
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, P.R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P.R. China
| | - Nan Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, P.R. China
| |
Collapse
|
25
|
Li RZ, Tang H, Wan L, Zhang X, Fu Z, Liu J, Yang S, Jia D, Niu D. Site-Divergent Delivery of Terminal Propargyls to Carbohydrates by Synergistic Catalysis. Chem 2017. [DOI: 10.1016/j.chempr.2017.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Xiao G, Cintron-Rosado GA, Glazier DA, Xi BM, Liu C, Liu P, Tang W. Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation-n Interaction. J Am Chem Soc 2017; 139:4346-4349. [PMID: 28297601 DOI: 10.1021/jacs.7b01412] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-selective functionalization of hydroxyl groups in carbohydrates is one of the long-standing challenges in chemistry. Using a pair of chiral catalysts, we now can differentiate the most prevalent trans-1,2-diols in pyranoses systematically and predictably. Density functional theory (DFT) calculations indicate that the key determining factor for the selectivity is the presence or absence of a cation-n interaction between the cation in the acylated catalyst and an appropriate lone pair in the substrate. DFT calculations also provided a predictive model for site-selectivity and this model is validated by various substrates.
Collapse
Affiliation(s)
- Guozhi Xiao
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Gabriel A Cintron-Rosado
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Daniel A Glazier
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Bao-Min Xi
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Can Liu
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|