1
|
Yamashita K, Tabata Y, Yamakawa K, Mochizuki T, Matsui K, Hatano M, Ishihara K. Chiral Macrocyclic Catalysts for the Enantioselective Addition of Lithium Acetylides to Ketones. J Am Chem Soc 2023; 145:26238-26248. [PMID: 37924326 DOI: 10.1021/jacs.3c08905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Alkynyl addition to carbonyl compounds is a valuable synthetic method for the preparation of versatile chiral alcohols that are widely found in pharmaceuticals and natural products. Although a variety of enantioselective variations have been reported, alkynyl addition to simple ketones remains an unmet challenge due to their low reactivity and difficult enantiofacial discrimination. Here, we report a method for the catalytic enantioselective addition of lithium acetylide to a variety of ketones using macrocyclic lithium binaphtholates as catalysts. These reactions generally suffer from facile aggregation of lithium species, which leads to less active and selective catalysts. The macrocyclic structure designed in this study prevents such aggregation, affording a monomeric and highly active catalyst that can furnish enantioenriched tertiary alcohols from a variety of ketones within 5-30 min. Moreover, the confined cavity and lipophilicity of the macrocycle confer substrate specificity on the system, demonstrating a multiselectivity similar to that of enzymatic reactions. Thus, these findings offer new insights into the rational design of small-molecule artificial enzymes that exhibit high levels of reactivity and multiselectivity.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuji Tabata
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Katsuya Yamakawa
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takuya Mochizuki
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kai Matsui
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Manabu Hatano
- Faculty of Pharmaceutical Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada, Kobe 658-8558, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Zhang X, Zhang S, Li S, Feng X, Yamamoto Y, Bao M. Three-component addition of terminal alkynes, carboxylic acids, and tert-butyl hypochlorite. Chem Commun (Camb) 2022; 58:2670-2673. [PMID: 35107483 DOI: 10.1039/d2cc00374k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper described the unprecedented three-component addition of terminal alkynes, carboxylic acids, and tert-butyl hypochlorite. This new type of addition proceeds smoothly to produce gem-dichloroalkane derivatives in satisfactory to excellent yields via successive two-time additions under mild conditions. The synthetically useful functional groups, such as Cl, Br, CN, and NO2, remained intact in the final products.
Collapse
Affiliation(s)
- Xitao Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Shihong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China. .,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
3
|
Chiral Quaternary Ammoniums Derived from Dehydroabietylamine: Synthesis and Application to Alkynylation of Isatin Derivatives Catalyzed by Silver. Catalysts 2021. [DOI: 10.3390/catal11121479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abietic acid and its derivatives have broadly been used in fine chemicals and are renewable resources. Its inherent chiral rigid tricyclic phenanthrene skeleton is unique. Its utilities in asymmetric catalysis remain to be explored. A series new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were designed, and prepared by two convenient steps. Acylation of dehydroabietylamine with bromoacetyl chloride afforded amide holding bromoacetyl group in higher yields using triethyl amine as base. Subsequent quaternization reaction gave the desired amide-type chiral quaternary ammoniums. The new chiral quaternary ammoniums can be used as phase-transfer catalyst (PTC) for the transition metal-catalysed alkynylation of isatin derivatives.
Collapse
|
4
|
|
5
|
Lenhof J, Hutter M, Huch V, Jauch J. Towards the Total Synthesis of Jerangolids – Synthesis of an Advanced Intermediate for the Pharmacophore Substructure. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian Lenhof
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Michael Hutter
- Center for Bioinformatics Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Volker Huch
- General and Inorganic Chemistry Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Johann Jauch
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| |
Collapse
|
6
|
Chen Q, Luo M, Guo F, Liang K, Zhou F, Gao G. An Addition of Terminal Alkynes to Phthalazin‐2‐Ium Bromide Catalyzed by Copper. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Mingjian Luo
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Fang Guo
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Kun Liang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Guolin Gao
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| |
Collapse
|
7
|
Sandmeier T, Goetzke FW, Krautwald S, Carreira EM. Iridium-Catalyzed Enantioselective Allylic Substitution with Aqueous Solutions of Nucleophiles. J Am Chem Soc 2019; 141:12212-12218. [DOI: 10.1021/jacs.9b05830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tobias Sandmeier
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Simon Krautwald
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|
8
|
Huang Y, del Pozo J, Torker S, Hoveyda AH. Enantioselective Synthesis of Trisubstituted Allenyl-B(pin) Compounds by Phosphine-Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu-Allenyl Intermediates. J Am Chem Soc 2018; 140:2643-2655. [PMID: 29417810 PMCID: PMC6019291 DOI: 10.1021/jacs.7b13296] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Catalytic enantioselective boron-hydride additions to 1,3-enynes, which afford allenyl-B(pin) (pin = pinacolato) products, are disclosed. Transformations are promoted by a readily accessible bis-phosphine-Cu complex and involve commercially available HB(pin). The method is applicable to aryl- and alkyl-substituted 1,3-enynes. Trisubstituted allenyl-B(pin) products were generated in 52-80% yield and, in most cases, in >98:2 allenyl:propargyl and 92:8-99:1 enantiomeric ratio. Utility is highlighted through a highly diastereoselective addition to an aldehyde, and a stereospecific catalytic cross-coupling process that delivers an enantiomerically enriched allene with three carbon-based substituents. The following key mechanistic attributes are elucidated: (1) Spectroscopic and computational investigations indicate that low enantioselectivity can arise from loss of kinetic stereoselectivity, which, as suggested by experimental evidence, may occur by formation of a propargylic anion generated by heterolytic Cu-C cleavage. This is particularly a problem when trapping of the Cu-allenyl intermediate is slow, namely, when an electron deficient 1,3-enyne or a less reactive boron-hydride reagent (e.g., HB(dan) (dan = naphthalene-1,8-diaminato)) is used or under non-optimal conditions (e.g., lower boron-hydride concentration causing slower trapping). (2) With enynes that contain a sterically demanding o-aryl substituent considerable amounts of the propargyl-B(pin) isomer may be generated (25-96%) because a less sterically demanding transition state for Cu/B exchange becomes favorable. (3) The phosphine ligand can promote isomerization of the enantiomerically enriched allenyl-B(pin) product; accordingly, lower ligand loading might at times be optimal. (4) Catalytic cross-coupling with an enantiomerically enriched allenyl-B(pin) compound might proceed with high stereospecificity (e.g., phosphine-Pd-catalyzed cross-coupling) or lead to considerable racemization (e.g., phosphine-Cu-catalyzed allylic substitution).
Collapse
Affiliation(s)
- Youming Huang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Juan del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts 02467
| |
Collapse
|
9
|
Luo S, Zhang X, Zheng Y, Harms K, Zhang L, Meggers E. Enantioselective Alkynylation of Aromatic Aldehydes Catalyzed by a Sterically Highly Demanding Chiral-at-Rhodium Lewis Acid. J Org Chem 2017; 82:8995-9005. [DOI: 10.1021/acs.joc.7b01394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shipeng Luo
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Xiao Zhang
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Yu Zheng
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Lilu Zhang
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|