1
|
Zhou L, Cui Y, Huang X, Xie S, Wu J, Wei C, Li X, Chen H. One-Pot Stereoselective Synthesis of the Naphthofurano-Iminosugars via a [3 + 2] Cycloaddition Reaction. J Org Chem 2024; 89:13235-13242. [PMID: 39254576 DOI: 10.1021/acs.joc.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This study presents the synthesis of novel naphthofurano-iminosugars (4) using 2,3-O-isopropylidene D-ribose tosylate (1a), anilines (2), and 1,4-benzoquinone (3a) as starting materials through key iminium ion/enamine intermediates via [3 + 2] cyclization reactions at room temperature. The reaction has unique regioselectivity and stereoselectivity with moderate to excellent yields. The adaptability of this method has been demonstrated using various substituted anilines, on which both electron-donating and electron-withdrawing groups were well employed in the reactions. Notably, the treatment of the fused multicyclic iminosugar 4 with TFA efficiently leads to an interesting unexpected pyridinium salt (8), possible via four sequential steps: deprotection of the 2,3-O-isopropylidene group, furan ring opening, dehydration condensation of the OH groups, and elimination of water.
Collapse
Affiliation(s)
- Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, Hebei 054001, PR China
| | - Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Xiaoyan Huang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Song Xie
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, PR China
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Hubbell GE, Tepe JJ. Rh(III)-Catalyzed C-H Activation/Annulation of Benzohydroxamates and 2-Imidazolones: Access to Urea-Fused-Dihydroisoquinolone Scaffolds Reminiscent of Pyrrole Alkaloid Natural Products. Org Lett 2022; 24:6740-6744. [PMID: 36083605 DOI: 10.1021/acs.orglett.2c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed C-H activation/annulation with an imidazolone as alkene partner is reported to access dihydroisoquinolone-fused imidazolin-2-ones. These bicycles are reminiscent of scaffolds belonging to the pyrrole alkaloid family of natural products. This approach facilitates construction of a variety of urea-fused dihydroisoquinolone scaffolds including heterocyclic moieties.
Collapse
Affiliation(s)
- Grace E Hubbell
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Liu X, Li F, Su L, Wang M, Jia T, Xu X, Li X, Wei C, Luo C, Chen S, Chen H. Design and synthesis of novel benzimidazole-iminosugars linked a substituted phenyl group and their inhibitory activities against β-glucosidase. Bioorg Chem 2022; 127:106016. [PMID: 35841671 DOI: 10.1016/j.bioorg.2022.106016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
A series of novel benzimidazole-iminosugars linked a (substuituted) phenyl group on benzene ring of benzimidazole 5(a-p) and 6(a-p) have been rationally designed and conveniently synthesized through Suzuki coupling reaction in high yields. All compounds have been evaluated for their inhibitory activities against β-glucosidase (almond). Six compounds 5d, 6d, 6e, 6i, 6n, and 6p showed more significant inhibitory activities with IC50 values in the range of 0.03-0.08 μM, almost 10-fold improved than that of the parent analogue 4, and much higher than that of the positive control castanospermine. The additional phenyl ring and the electron donating groups on it would be beneficial for the activity. Compounds 6d, 6n, and 4 had been chosen to be tested for their inhibition types against β-glucosidase. Interestingly, three compounds have different inhibition types although they had very similar structure. Their Ki values were calculated to be 0.02 ± 0.01 μM, 0.02 ± 0.01 μM, and 0.66 ± 0.14 μM, respectively. The equilibrium dissociation constant (KD) for 6d, 6n, and 4 and β-glucosidase was 0.04 μM, 0.03 μM and 0.45 μM by the ITC-based assay, respectively. Molecular docking work suggests that such benzimidazole-iminosugars derivatives might bind to the active site of β-glucosidase mainly through hydrogen bonds, the additional phenyl ring towards the solvent-exposed region played an important effect on their inhibitory activity against β-glucosidase.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Fengxin Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Lulu Su
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Tongguan Jia
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Wu J, Su L, Jia T, Xu X, Cui Y, Wei C, Li X, Chen H. Efficient one-pot synthesis of the unexpected fused multicyclic iminosugars by an aza-Diels–Alder mechanism. Org Chem Front 2022. [DOI: 10.1039/d2qo01284g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simple and efficient one-pot protocol has been developed by an aza-Diels–Alder mechanism for the stereoselective synthesis of novel fused multicyclic iminosugars with structural diversity.
Collapse
Affiliation(s)
- Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Lulu Su
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Tongguan Jia
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China
| |
Collapse
|
6
|
Ohashi E, Karanjit S, Nakayama A, Takeuchi K, Emam SE, Ando H, Ishida T, Namba K. Efficient construction of the hexacyclic ring core of palau'amine: the p K a concept for proceeding with unfavorable equilibrium reactions. Chem Sci 2021; 12:12201-12210. [PMID: 34667586 PMCID: PMC8457368 DOI: 10.1039/d1sc03260g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Palau'amine has received a great deal of attention as an attractive synthetic target due to its intriguing molecular architecture and significant immunosuppressive activity, and we achieved its total synthesis in 2015. However, the synthesized palau'amine has not been readily applicable to the mechanistic study of immunosuppressive activity, because it requires 45 longest linear steps from a commercially available compound. Here, we report the short-step construction of the ABCDEF hexacyclic ring core of palau'amine. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with unfavorable equilibrium reactions, and a palau'amine analog without the aminomethyl and chloride groups is synthesized in 20 longest linear steps from the same starting material. The palau'amine analog is confirmed to retain the immunosuppressive activity. The present synthetic approach for a palau'amine analog has the potential for use in the development of palau'amine probes for mechanistic elucidation. A palau'amine analog (2) was synthesized from 2-cyclopentenone in 20 steps. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with the unfavorable equilibrium reactions.![]()
Collapse
Affiliation(s)
- Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kohei Takeuchi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sherif E Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Hidenori Ando
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Tatsuhiro Ishida
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| |
Collapse
|
7
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
8
|
Herath AK, Lovely CJ. Pyrrole carboxamide introduction in the total synthesis of pyrrole-imidazole alkaloids. Org Biomol Chem 2021; 19:2603-2621. [PMID: 33683231 DOI: 10.1039/d0ob02052d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review various strategies for the incorporation of the signature pyrrole carboxamide moiety in the total syntheses of pyrrole-imidazole alkaloids (PIA) are discussed. These so-called oroidin alkaloids have a broad range of biological activities and display interesting skeletal diversity and complexity. These alkaloids are sponge-derived secondary metabolites and thus far more than 200 members of the PIA family have been isolated over the past few decades. Methods range from classical amide bond forming processes to non-traditional bond formation including the de novo synthesis of the pyrrole itself.
Collapse
Affiliation(s)
- Apsara K Herath
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | |
Collapse
|
9
|
López R, Palomo C. N,N-Diacylaminals as Emerging Tools in Synthesis: From Peptidomimetics to Asymmetric Catalysis. Chemistry 2021; 27:20-29. [PMID: 32667706 DOI: 10.1002/chem.202002637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Indexed: 12/26/2022]
Abstract
N,N-Diacylaminals are flexible molecular scaffolds that have commonly been utilized as amide surrogates in peptidomimetics. The singularities of this motif as an N-acyl imine equivalent and as hydrogen-bond donor have recently opened new synthetic opportunities, especially in the field of asymmetric catalysis. This concept article highlights this diverse synthetic potential and provides the elements necessary for further developments.
Collapse
Affiliation(s)
- Rosa López
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| |
Collapse
|
10
|
Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org Chem Front 2021. [DOI: 10.1039/d0qo01574a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review discusses total syntheses of pyrrole-containing natural products over the last ten years, highlighting recent advances in the chemistry of pyrroles in the context of their innate reactivity, and their preparation in complex settings.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sahil Kohli
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hannah Asiki
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Garima Rathee
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Edward A. Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
11
|
Harada S, Kobayashi M, Kono M, Nemoto T. Site-Selective and Chemoselective C–H Functionalization for the Synthesis of Spiroaminals via a Silver-Catalyzed Nitrene Transfer Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masato Kono
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Synthesis of tricyclic benzimidazole-iminosugars as potential glycosidase inhibitors via a Mitsunobu reaction. Carbohydr Res 2019; 485:107807. [DOI: 10.1016/j.carres.2019.107807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023]
|
14
|
Zhang M, Ding Y, Qin HX, Xu ZG, Lan HT, Yang DL, Yi C. One-pot synthesis of substituted pyrrole-imidazole derivatives with anticancer activity. Mol Divers 2019; 24:1177-1184. [PMID: 31494841 DOI: 10.1007/s11030-019-09982-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/24/2019] [Indexed: 02/05/2023]
Abstract
A facile and efficient method to synthesize pyrrole-imidazole was developed via a post-Ugi cascade reaction followed by one purification procedure. Synthesized pyrrole-imidazole was collected by performing a mild reaction and a simple procedure, which could be applicable to a broad scope of functionalized anilines. The screening results demonstrated that compound 7e exhibited a high potency of anticancer activity in human pancreatic cancer cell lines PANC and ASPC-1. Our work shed light on the potential of post-Ugi cascade reaction in combinatorial and medicinal chemistry.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Abdominal Cancer, West China Hospital, West China Clinical Medical School, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China.,Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Yong Ding
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, China
| | - Hong-Xia Qin
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, China
| | - Zhi-Gang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, China
| | - Hai-Tao Lan
- Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China.
| | - Dong-Lin Yang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, China.
| | - Cheng Yi
- Department of Abdominal Cancer, West China Hospital, West China Clinical Medical School, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China.
| |
Collapse
|
15
|
Sun J, Kang Y, Gao L, Lu X, Ju H, Li X, Chen H. Synthesis of tricyclic quinazolinone-iminosugars as potential glycosidase inhibitors via a Mitsunobu reaction. Carbohydr Res 2019; 478:10-17. [PMID: 31039450 DOI: 10.1016/j.carres.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
A series of novel tricyclic quinazolinone-iminosugars 1 (a-c) were synthesized from the benzyl protected sugars through three steps. Firstly, the benzyl protected sugar (aldehyde) 5 reacted with o-aminobenzamide by the iodine-induced oxidative condensation to afford the corresponding aldo-quizanolinone 6. Secondly, through the intramolecular cyclization of the unprotected OH and the amide NH in 6, the tricyclic compounds 7 and 8 were constructed by the key Mitsunobu reaction. Finally, removal of the benzyl group gave the target tricyclic quinazolinone-iminosugars 1. The protocol was effective for the preparation of the tricyclic iminosugars in satisfactory yield. Interestingly, an unusual C-2 epimerization was observed with d-mannose and d-ribose compounds under the conditions of the Mitsunobu reaction that generated the products having the trans configuration at the C-2 and C-3 positions. Unfortunately, such tricyclic quinazolinone-iminosugars showed no inhibitory effects on the tested five glycosidases.
Collapse
Affiliation(s)
- Jiajing Sun
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yaqing Kang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Ligang Gao
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Xin Lu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Huanhuan Ju
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
16
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
17
|
Marcantoni E, Palmieri A, Petrini M. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00196d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Amido sulfones can be directly used as N-acylimine or N-acyliminium ion precursors in several synthetic processes aimed at the preparation of nitrogen containing compounds. This review collects the most relevant and practical utilizations of α-amido sulfones appeared in the literature after 2005.
Collapse
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| |
Collapse
|
18
|
Kono M, Harada S, Nemoto T. Rhodium-Catalyzed Stereospecific C−H Amination for the Construction of Spiroaminal Cores: Reactivity Difference between Nitrenoid and Carbenoid Species against Amide Functionality. Chemistry 2017; 23:7428-7432. [DOI: 10.1002/chem.201701464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Masato Kono
- Graduate School of Pharmaceutical Sciences; Chiba University, 1-8-1, Inohana, Chuo-ku; Chiba 260-8675 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences; Chiba University, 1-8-1, Inohana, Chuo-ku; Chiba 260-8675 Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences; Chiba University, 1-8-1, Inohana, Chuo-ku; Chiba 260-8675 Japan
- Chirality Research Center; Chiba University, 1-33, Yayoi-cho, Inage-ku; Chiba 263-8522 Japan
| |
Collapse
|