1
|
Akae Y. Cyclodextrin-based rotaxanes for polymer materials: challenge on simultaneous realization of inexpensive production and defined structures. Beilstein J Org Chem 2024; 20:3026-3049. [PMID: 39600955 PMCID: PMC11590023 DOI: 10.3762/bjoc.20.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Owing to their dynamic natures, rotaxane-based polymers are attractive motifs for developing stimuli-responsive materials. However, the accurate control of the rotaxane structure, which can be achieved via multistep synthesis, is key to utilizing the material. Concurrently, implementing a scale-up synthesis procedure to exploit the application potential of rotaxane-based polymers induces structural ambiguities, thereby presenting a significant trade-off between realizing inexpensive production and defined structures. To overcome this rotaxane-synthesis challenge, cyclodextrin (CD) can be employed as a promising alternative owing to its low production cost. Thus, this study presents an overview of the precise synthesis of CD-based rotaxane and its application to polymers to simultaneously ensure inexpensive production and realize defined structures.
Collapse
Affiliation(s)
- Yosuke Akae
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Faculty of Textile Science and Technology, Shinshu University, 386-8567 Nagano, Japan
- Research Fellow of Japan Society for the Promotion of Science, 102-0083 Tokyo, Japan
| |
Collapse
|
2
|
Akae Y, Theato P. Polyurethane-Type Poly[3]rotaxanes Synthesized from Cyclodextrin-Based [3]Rotaxane Diol and Diisocyanates. Macromol Rapid Commun 2024; 45:e2400441. [PMID: 39042093 DOI: 10.1002/marc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Synthesis of polyurethane-type poly[3]rotaxanes is achieved by polyaddition between a cyclodextrin (CD)-based [3]rotaxane diol and various diisocyanate species, which provide a more defined structure compared to conventional polyrotaxane syntheses. In this study, hydroxyl groups on CDs of [3]rotaxane diol are initially acetylated, and deprotected after the polyaddition to introduce polyurethane backbone structure into polyrotaxane framework. Despite a relatively complicated chemical structure, [3]rotaxane diol monomer is successfully synthesized in a high yield (overall 67%) without any taxing purification process, which is beneficial for practical applications. The polymerization itself proceeds well under a standard polyaddition reaction condition to afford corresponding polyurethanes around 80% yield with Mn > 30 kDa. The poly[3]rotaxanes show different aggregation behavior or optical properties, whether or not acetyl groups are present, and are analyzed by XRD, SEM, and fluorescence measurements.
Collapse
Affiliation(s)
- Yosuke Akae
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Soft Matter Synthesis Laboratory - Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Devi LS, Casadidio C, Gigliobianco MR, Di Martino P, Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int J Pharm 2024; 654:123976. [PMID: 38452831 DOI: 10.1016/j.ijpharm.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| | - Cristina Casadidio
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy; Department of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University 99, 3508 TB Utrecht, the Netherlands.
| | - Maria Rosa Gigliobianco
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy.
| | - Piera Di Martino
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, (CH), Italy
| | - Roberta Censi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| |
Collapse
|
4
|
Jalilehvand F, Homayonia S, Zhang P, Ling CC. Gadolinium(III) complex formation with a β-cyclodextrin ligand: an XAS study of a potential MRI contrast agent. J Biol Inorg Chem 2023; 28:805-811. [PMID: 37981582 DOI: 10.1007/s00775-023-02027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
In the search for improved and safer gadolinium-based magnetic resonance imaging (MRI) contrast agents, macrocyclic cyclodextrins (CDs) attract great interest. Our group previously synthesized a cyclodextrin-based ligand with 1,2,3-triazolmethyl residues conjugated to β-CD, called β-CD(A), which efficiently chelates Gd(III) ions. To probe the local structure around the Gd(III) ion in the 1:1 Gd(III): β-CD(A) complex in aqueous solution (pH 5.5), we used extended X-ray absorption fine structure (EXAFS) spectroscopy. Least-squares curve fitting of the Gd L3-edge EXAFS spectrum revealed 5 Gd-O (4 COO- and 1 H2O) and 4 Gd-N (from two imino and two 1,2,3-triazole groups) bonds around the Gd(III) ion with average distances 2.36 and 2.56 ± 0.02 Å, respectively. A similar EXAFS spectrum was obtained from an aqueous solution of the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)], also 9-coordinated in its first shell. Careful analysis revealed that the mean Gd-N distance is shorter in the Gd(III): β-CD(A) (1:1) complex, indicating stronger Gd-N bonding and stronger Gd(III) complex formation than with the DOTA4- ligand. This is consistent with the lower free Gd3+ concentration found previously for the Gd(III): β-CD(A) (1:1) complex than for the [Gd(DOTA)(H2O)]- complex, and shows its potential as an MRI probe. EXAFS spectroscopy revealed a similar Gd(III) 9-coordination although slightly stronger for a modified β-cyclodextrin: Gd(III) 1:1 complex, [Gd(LH4)]7-, in aqueous solution than for the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)].
Collapse
Affiliation(s)
- Farideh Jalilehvand
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Saba Homayonia
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Boumati S, Sour A, Heitz V, Seguin J, Beitz G, Kaga Y, Jakubaszek M, Karges J, Gasser G, Mignet N, Doan BT. Three in One: In Vitro and In Vivo Evaluation of Anticancer Activity of a Theranostic Agent that Combines Magnetic Resonance Imaging, Optical Bioimaging, and Photodynamic Therapy Capabilities. ACS APPLIED BIO MATERIALS 2023; 6:4791-4804. [PMID: 37862269 DOI: 10.1021/acsabm.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Cancer treatment is a crucial area of research and development, as current chemotherapeutic treatments can have severe side effects or poor outcomes. In the constant search for new strategies that are localized and minimally invasive and produce minimal side effects, photodynamic therapy (PDT) is an exciting therapeutic modality that has been gaining attention. The use of theranostics, which combine diagnostic and therapeutic capabilities, can further improve treatment monitoring through image guidance. This study explores the potential of a theranostic agent consisting of four Gd(III) DTTA complexes (DTTA: diethylenetriamine-N,N,N″,N″-tetraacetate) grafted to a meso-tetraphenylporphyrin core for PDT, fluorescence, and magnetic resonance imaging (MRI). The agent was first tested in vitro on both nonmalignant TIB-75 and MRC-5 and tumoral CT26 and HT-29 cell lines and subsequently evaluated in vivo in a preclinical colorectal tumor model. Advanced MRI and optical imaging techniques were employed with engineered quantitative in vivo molecular imaging based on dynamic acquisition sequences to track the biodistribution of agents in the body. With 3D quantitative volume computed by MRI and tumoral cell function assessed by bioluminescence imaging, we could demonstrate a significant impact of the molecular agent on tumor growth following light application. Further exhaustive histological analysis confirmed these promising results, making this theranostic agent a potential drug candidate for cancer.
Collapse
Affiliation(s)
- Sarah Boumati
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Angélique Sour
- Université de Strasbourg, Institut de Chimie de Strasbourg, CNRS, UMR 7177, Laboratoire LSAMM, 67070 Strasbourg, France
| | - Valérie Heitz
- Université de Strasbourg, Institut de Chimie de Strasbourg, CNRS, UMR 7177, Laboratoire LSAMM, 67070 Strasbourg, France
| | - Johanne Seguin
- Université Paris Cité, CNRS, Inserm, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France
| | - Gautier Beitz
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Yusuke Kaga
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Marta Jakubaszek
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Karges
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Gilles Gasser
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, Inserm, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France
| | - Bich-Thuy Doan
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| |
Collapse
|
6
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Akae Y, Theato P. Aggregation Behavior of Cyclodextrin-Based [3]Rotaxanes. Chemistry 2023; 29:e202301582. [PMID: 37272359 DOI: 10.1002/chem.202301582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
The aggregation of a cyclodextrin (CD)-based [3]rotaxane has been observed and analyzed in detail for the first time in this work. Although the hexagonal packing aggregation of CD-based polyrotaxane is a well known phenomenon, corresponding studies in terms of rotaxanes without any polymer structure have not been conducted so far, probably owing to the difficulty of the molecular design. We synthesized a series of [3]rotaxane species by using a urea-end-capping method and evaluated their aggregation behavior by XRD and SEM measurements. [3]Rotaxane species containing native CD rings showed clear signals assigned to the hexagonal packing by XRD measurement as did polyrotaxane; this proved their aggregation capability. Because the corresponding per-acetylated derivatives did not show this aggregation behavior, the driving force of this aggregation was suggested to be hydrogen bond formation among CD units. The effect of axle end structures and partial acetylation of CDs were also studied.
Collapse
Affiliation(s)
- Yosuke Akae
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Research Fellow of Japan Society for the Promotion of Science, 102-0083, Tokyo, Japan
- Faculty of Textile Science and Technology, Shinshu University, Matsumoto, 386-8567 Nagano, Japan
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Soft Matter Synthesis Laboratory -, Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
d'Orchymont F, Holland JP. Asymmetric rotaxanes as dual-modality supramolecular imaging agents for targeting cancer biomarkers. Commun Chem 2023; 6:107. [PMID: 37264077 DOI: 10.1038/s42004-023-00906-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
Dual-modality imaging agents featuring both a radioactive complex for positron emission tomography (PET) and a fluorophore for optical fluorescence imaging (OFI) are crucial tools for reinforcing clinical diagnosis and intraoperative surgeries. We report the synthesis and characterisation of bimodal mechanically interlocked rotaxane-based imaging agents, constructed via the cucurbit[6]uril CB[6]-mediated alkyne-azide 'click' reaction. Two synthetic routes involving four- or six-component reactions are developed to access asymmetric rotaxanes. Furthermore, by using this rapid and versatile approach, a peptide-based rotaxane targeted toward the clinical prostate cancer biomarker, prostate-specific membrane antigen (PSMA), and bearing a 68Ga-radiometal ion complex for positron emission tomography and fluorescein as an optically active imaging agent, was synthesised. The chemical and radiochemical stability, and the cellular uptake profile of the radiolabelled and fluorescent rotaxane was evaluated in vitro where the experimental data demonstrate the viability of using an asymmetric rotaxane platform to produce dual-modality imaging agents that specifically target prostate cancer cells.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Liu E, Cherraben S, Boulo L, Troufflard C, Hasenknopf B, Vives G, Sollogoub M. A molecular information ratchet using a cone-shaped macrocycle. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
d'Orchymont F, Holland JP. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem Sci 2022; 13:12713-12725. [PMID: 36519052 PMCID: PMC9645377 DOI: 10.1039/d2sc03928a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2023] Open
Abstract
Radiolabelled monoclonal antibodies (mAbs) are a cornerstone of molecular diagnostic imaging and targeted radioimmunotherapy in nuclear medicine, but one of the major challenges in the field is to identify ways of reducing the radiation burden to patients. We reasoned that a rotaxane-based platform featuring a non-covalent mechanical bond between the radionuclide complex and the biologically active mAb could offer new ways of controlling the biophysical properties of cancer-specific radiotracers for positron emission tomography (PET). Herein, we present the photoradiosynthesis and characterisation of [89Zr]ZrFe-[4]rotaxane-azepin-onartuzumab ([89Zr]ZrFe-2), a unique rotaxane-antibody conjugate for PET imaging and quantification of the human hepatocyte growth factor receptor (c-MET). Multiple component self-assembly reactions were combined with simultaneous 89Zr-radiolabelling and light-induced bioconjugation methods to give [89Zr]ZrFe-2 in 15 ± 1% (n = 3) decay-corrected radiochemical yield, with >90% radiochemical purity, and molar activities suitable for PET imaging studies (>6.1 MBq mg-1 of protein). Cellular assays confirmed the specificity of [89Zr]ZrFe-2 binding to the c-MET receptor. Temporal PET imaging in athymic nude mice bearing subcutaneous MKN-45 gastric adenocarcinoma xenografts demonstrated specific binding of [89Zr]ZrFe-2 toward c-MET in vivo, where tumour uptake reached 9.8 ± 1.3 %ID g-1 (72 h, n = 5) in a normal group and was reduced by ∼56% in a control (blocking) group. Head-to-head comparison of the biodistribution and excretion profile of [89Zr]ZrFe-2versus two control compounds, alongside characterisation of two potential metabolites, showed that the rotaxane-radiotracer has an improved clearance profile with higher tumour-to-tissue contrast ratios and reduced radiation exposure to critical (dose-limiting) organs including liver, spleen, and kidneys. Collectively, the experimental results suggested that non-covalent mechanical bonds between the radionuclide and mAb can be used to fine-tune the pharmacokinetic profile of supramolecular radiopharmaceuticals in ways that are simply not accessible when using traditional covalent design.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| | - Jason P Holland
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| |
Collapse
|
11
|
d'Orchymont F, Holland JP. Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022; 61:e202204072. [PMID: 35532102 PMCID: PMC9400884 DOI: 10.1002/anie.202204072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Mechanically interlocked molecules present opportunities to construct therapeutic drugs and diagnostic imaging agents but harnessing supramolecular chemistry to make biologically active probes in water is a challenge. Here, we describe a rotaxane‐based approach to synthesise radiolabelled proteins and peptides for molecular imaging of cancer biomarkers in vivo. Host–guest chemistry using β‐cyclodextrin‐ and cucurbit[6]uril‐catalysed cooperative capture synthesis produced gallium‐68 or zirconium‐89 radiolabelled metallo[4]rotaxanes. Photochemical conjugation to trastuzumab led to a viable positron emission tomography (PET) radiotracer. The rotaxane architecture can be tuned to accommodate different radiometal ion complexes, other protein‐ or peptide‐based drugs, and fluorophores for optical detection. This technology provides a platform to explore how mechanical bonding can improve drug delivery, enhance tumour specificity, control radiotracer pharmacokinetics, and reduce dosimetry.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jason P. Holland
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
12
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
15
|
Scelle J, Vervoitte H, Bouteiller L, Chamoreau LM, Sollogoub M, Vives G, Hasenknopf B. Size-dependent compression of threaded alkyldiphosphate in head to head cyclodextrin [3]pseudorotaxanes. Chem Sci 2022; 13:2218-2225. [PMID: 35310501 PMCID: PMC8864808 DOI: 10.1039/d1sc05697b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
The encapsulation of guests in a confined space enables unusual conformations and reactivities. In particular, the compression of akyl chains has been obtained by self-assembled molecular capsules but such an effect has not been reported in solution for pseudorotaxane architectures. By exploiting the tendency of cyclodextrin (CD) to form head to head [3]pseudorotaxanes and the hydrogen bonding abilities of phosphate groups, we have studied the effect of the CD dimer cavity on the conformation of threaded α,ω-alkyl-diphosphate axles. The formation of [2]pseudorotaxanes and [3]pseudorotaxanes was investigated by a combination of NMR, ITC and X-ray diffraction techniques. In the solid state, the [3]pseudorotaxane with a C8 axle presents a fully extended conformation with both terminal phosphate groups interacting with hydroxyl groups of the primary rim of CDs. Such hydrogen bonding interactions are also present with the C9 and C10 axles resulting in a compression of the alkyl chain with gauche conformations in the solid state. NMR studies have shown that this effect is maintained in solution resulting in a size-dependent progressive compression of the alkyl chain by the CD [3]pseudorotaxane architecture for C9, C10 and C11 axles. Alkyl chain compression of alkanediphosphate guests was achieved by head-to-head cyclodextrin [3]pseudorotaxanes in a mechanostereoselective self-assembly process.![]()
Collapse
Affiliation(s)
- Jérémy Scelle
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Hugo Vervoitte
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Lise-Marie Chamoreau
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Guillaume Vives
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Bernold Hasenknopf
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| |
Collapse
|
16
|
Sembo-Backonly BS, Estour F, Gouhier G. Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Adv 2021; 11:29762-29785. [PMID: 35479531 PMCID: PMC9040919 DOI: 10.1039/d1ra04084g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for non-invasive, high-resolution three-dimensional medical imaging of anatomical structures such as organs and tissues. The use of contrast agents based on gadolinium chelates started in 1988 to improve the quality of the image, since researchers and industry focused their attention on the development of more efficient and stable structures. This review is about the state of the art of MRI contrast agents based on cyclodextrin scaffolds. Chemical engineering strategies are herein reported including host-guest inclusion complexation and covalent linkages. It also offers descriptions of the MRI properties and in vitro and in vivo biomedical applications of these emerging macrostructures. It highlights that these supramolecular associations can improve the image contrast, the sensitivity, and the efficiency of MRI diagnosis by targeting cancer tumors and other diseases with success proving the great potential of this natural macrocycle.
Collapse
Affiliation(s)
- Berthe Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - François Estour
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| |
Collapse
|
17
|
Programmed Synthesis of Hepta‐Differentiated β‐Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Liu J, Wang B, Przybylski C, Bistri-Aslanoff O, Ménand M, Zhang Y, Sollogoub M. Programmed Synthesis of Hepta-Differentiated β-Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021; 60:12090-12096. [PMID: 33650730 DOI: 10.1002/anie.202102182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Cyclodextrin poly-functionalization has fueled progress in their use in multiple applications such as enzyme mimicry, but also in the polymer sciences, luminescence, as sensors or for biomedical applications. However, regioselective access to a given pattern of functions on β-cyclodextrin is still very limited. We uncover a new orienting group, the thioacetate, that expands the toolbox available for cyclodextrin poly-hetero-functionalization using diisobutylaluminum hydride (DIBAL-H) promoted debenzylation. The usefulness of this group is illustrated in the first synthesis of a precisely hepta-hetero-functionalized β-cyclodextrin. By way of comparison, a random hepta-functionalization would give 117655 different molecules. This synthesis is not simply the vain quest for the Holy Grail of CD hetero-functionalization, but it illustrates the versatility of the DIBAL-H oriented hetero-functionalization strategy, opening the way to a multitude of useful functionalization patterns for new practical applications.
Collapse
Affiliation(s)
- Jiang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Bo Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Olivia Bistri-Aslanoff
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| |
Collapse
|
19
|
Gd3+ Complexes Conjugated to Cyclodextrins: Hydroxyl Functions Influence the Relaxation Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the search for improvement in the properties of gadolinium-based contrast agents, cyclodextrins (CDs) are interesting hydrophilic scaffolds with high molecular weight. The impact of the hydrophilicity of these systems on the MRI efficacy has been studied using five β-CDs substituted with DOTA or TTHA ligands which, respectively, allow for one (q = 1) or no water molecule (q = 0) in the inner coordination sphere of the Gd3+ ion. Original synthetic pathways were developed to immobilize the ligands at C-6 position of various hydroxylated and permethylated β-CDs via an amide bond. To describe the influence of alcohol and ether oxide functions of the CD macrocycle on the relaxation properties of the Gd3+ complexes, 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles, and 17O transverse relaxation rates have been measured at various temperatures. The differences observed between the hydroxylated and permethylated β-CDs bearing non-hydrated GdTTHA complexes can be rationalized by a second sphere contribution to the relaxivity in the case of the hydroxylated derivatives, induced by hydrogen-bound water molecules around the hydroxyl groups. In contrast, for the DOTA analogs the exchange rate of the water molecule directly coordinated to the Gd3+ is clearly influenced by the number of hydroxyl groups present on the CD, which in turn influences the relaxivity and gives rise to a very complex behavior of these hydrophilic systems.
Collapse
|
20
|
Evans NH. Lanthanide-Containing Rotaxanes, Catenanes, and Knots. Chempluschem 2020; 85:783-792. [PMID: 32319722 DOI: 10.1002/cplu.202000135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Indexed: 12/22/2022]
Abstract
The valuable luminescence, magnetic, and catalytic properties of lanthanide cations are beginning to be exploited in conjunction with structurally exotic mechanically interlocked molecules (MIMs) such as rotaxanes, catenanes and knots. This Minireview provides an account of this rapidly developing research area commencing with the use of lanthanides in extended MIM-containing frameworks. Then, attention turns to discrete lanthanide-containing pseudorotaxanes, followed by fully interlocked rotaxanes, catenanes and knots - where lanthanides have not only been incorporated into MIM architectures but have also been used to template formation of the interlocked structure. Particular focus is paid to examples where the lanthanide MIMs have been put to useful applications, in what is still a relatively youthful avenue of research in both lanthanide coordination chemistry and the chemistry of mechanically interlocked molecules.
Collapse
Affiliation(s)
- Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
21
|
Aouidat F, Boumati S, Khan M, Tielens F, Doan BT, Spadavecchia J. Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications. Int J Nanomedicine 2019; 14:9309-9324. [PMID: 31819433 PMCID: PMC6894158 DOI: 10.2147/ijn.s224805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The development of biopolymers for the synthesis of Gd(III) nanoparticles, as therapeutics, could play a key role in nanomedicine. Biocompatible polymers are not only used for complex monovalent biomolecules, but also for the realization of multivalent active targeting materials as diagnostic and/or therapeutic hybrid nanoparticles. In this article, it was reported for the first time, a novel synthesis of Gd(III)-biopolymer-Au(III) complex, acting as a key ingredient of core-shell gold nanoparticles (Gd(@AuNPs). MATERIAL AND METHODS The physical and chemical evaluation was carried out by spectroscopic analytical techniques (Raman spectroscopy, UV-visible and TEM). The theoretical characterization by DFT (density functional theory) analysis was carried out under specific conditions to investigate the interaction between the Au and the Gd precursors, during the first nucleation step. Magnetic features with relaxivity measurements at 7T were also performed as well as cytotoxicity studies on hepatocyte cell lines for biocompatibility studies. The in vivo detailed dynamic biodistribution studies in mice to characterize the potential applications for biology as MRI contrast agents were then achieved. RESULTS Physical-chemical evaluation confirms the successful design and reaction supposed. Viabilities of TIB-75 (hepatocytes) cells were evaluated using Alamar blue cytotoxic tests with increasing concentrations of nanoparticles. In vivo biodistribution studies were then accomplished to assess the kinetic behavior of the nanoparticles in mice and characterize their stealthiness property after intravenous injection. CONCLUSION We demonstrated that Gd@AuNPs have some advantages to display hepatocytes in the liver. Particularly, these nanoconjugates give a good cellular uptake of several quantities of Gd@NPs into cells, while preserving a T1 contrast inside cells that provide a robust in vivo detection using T1-weighted MR images. These results will strengthen the role of gadolinium as complex to gold in order to tune Gd(@AuNPs) as an innovative diagnostic agent in the field of nanomedicine.
Collapse
Affiliation(s)
- Fatima Aouidat
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Sarah Boumati
- UTCBS – Chimie ParisTech – University Paris Descartes - CNRS UMR 8258 – INSERM U1022 Equipe “Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnostics” SEISAD, Paris, France
| | - Memona Khan
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Frederik Tielens
- General Chemistry (ALGC), Vrije University of Brussel (Free University Brussels-VUB), Brussel, Belgium
| | - Bich-Thuy Doan
- UTCBS – Chimie ParisTech – University Paris Descartes - CNRS UMR 8258 – INSERM U1022 Equipe “Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnostics” SEISAD, Paris, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| |
Collapse
|
22
|
Akae Y, Sogawa H, Takata T. Effective Synthesis and Modification of α‐Cyclodextrin‐Based [3]Rotaxanes Enabling Versatile Molecular Design. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yosuke Akae
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2–12–1, O‐okayama, Meguro‐ku 152–8552 Tokyo Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2–12–1, O‐okayama, Meguro‐ku 152–8552 Tokyo Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2–12–1, O‐okayama, Meguro‐ku 152–8552 Tokyo Japan
| |
Collapse
|
23
|
Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
25
|
Design of cyclodextrin-based systems for intervention execution. DELIVERY OF THERAPEUTICS FOR BIOGERONTOLOGICAL INTERVENTIONS 2019. [PMCID: PMC7150343 DOI: 10.1016/b978-0-12-816485-3.00005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Technologies for nucleic acid delivery have displayed high practical potential in mediating genetic manipulation to modulate metabolic pathways to combat aging. In the previous chapter, we have delineated a series of techniques for designing and developing polymeric vectors as nonviral carriers. Based on what we have discussed, this chapter will introduce how the delivery performance and versatility of polymeric vectors can be further enhanced by using cyclodextrins (CDs). Over the years, CDs have shown promising application potential in different areas, ranging from controlled drug release to chiral separation of basic drugs. These applications are largely mediated by the ability of CDs to undergo host–guest inclusion complexation. Upon incorporation of CDs into the design of a polymeric vector, not only can the flexibility of the design be increased, but the development of a multifunctional carrier for genetic manipulation can also be facilitated.
Collapse
|
26
|
Mondjinou YA, Loren BP, Collins CJ, Hyun SH, Demoret A, Skulsky J, Chaplain C, Badwaik V, Thompson DH. Gd 3+:DOTA-Modified 2-Hydroxypropyl-β-Cyclodextrin/4-Sulfobutyl Ether-β-Cyclodextrin-Based Polyrotaxanes as Long Circulating High Relaxivity MRI Contrast Agents. Bioconjug Chem 2018; 29:3550-3560. [PMID: 30403467 DOI: 10.1021/acs.bioconjchem.8b00525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of five water-soluble Gd3+:1,4,7,10-tetraazacyclododecane-1,4,7-tetraacetic acid-modified polyrotaxane (PR) magnetic resonance contrast agents bearing mixtures of 2-hydroxypropyl-β-cyclodextrin and 4-sulfobutylether-β-cyclodextrin macrocycles threaded onto Pluronic cores were developed as long circulating magnetic resonance contrast agents. Short diethylene glycol diamine spacers were utilized for linking the macrocyclic chelator to the PR scaffold prior to Gd3+ chelation. The PR products were characterized by 1H NMR, gel permeation chromatography/multiangle light scattering, dynamic light scattering, and analytical ultracentrifugation. Nuclear magnetic relaxation dispersion and molar relaxivity measurements at 23 °C revealed that all the PR contrast agents displayed high spin-spin T1 relaxation and spin-lattice T2 relaxation rates relative to a DOTAREM control. When injected at 0.05 mmol Gd/kg body weight in BALB/c mice, the PR contrast agents increased the T1-weighted MR image intensities with longer circulation times in the blood pool than DOTAREM. Excretion of the agents occurred predominantly via the renal or biliary routes depending on the polyrotaxane structure, with the longest circulating L81 Pluronic-based agent showing the highest liver uptake. Proteomic analysis of PR bearing different β-cyclodextrin moieties indicated that lipoproteins were the predominant component associated with these materials after serum exposure, comprising as much as 40% of the total protein corona. We infer from these findings that Gd(III)-modified PR contrast agents are promising long-circulating candidates for blood pool analysis by MRI.
Collapse
|
27
|
Jamieson EMG, Modicom F, Goldup SM. Chirality in rotaxanes and catenanes. Chem Soc Rev 2018; 47:5266-5311. [PMID: 29796501 PMCID: PMC6049620 DOI: 10.1039/c8cs00097b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Although chiral mechanically interlocked molecules (MIMs) have been synthesised and studied, enantiopure examples are relatively under-represented in the pantheon of reported catenanes and rotaxanes and the underlying chirality of the system is often even overlooked. This is changing with the advent of new applications of MIMs in catalysis, sensing and materials and the appearance of new methods to access unusual stereogenic units unique to the mechanical bond. Here we discuss the different stereogenic units that have been investigated in catenanes and rotaxanes, examples of their application, methods for assigning absolute stereochemistry and provide a perspective on future developments.
Collapse
Affiliation(s)
- E. M. G. Jamieson
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| | - F. Modicom
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| | - S. M. Goldup
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| |
Collapse
|
28
|
Champagne PL, Barbot C, Zhang P, Han X, Gaamoussi I, Hubert-Roux M, Bertolesi GE, Gouhier G, Ling CC. Synthesis and Unprecedented Complexation Properties of β-Cyclodextrin-Based Ligand for Lanthanide Ions. Inorg Chem 2018; 57:8964-8977. [DOI: 10.1021/acs.inorgchem.8b00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pier-Luc Champagne
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Cécile Barbot
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Ping Zhang
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Xuekun Han
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Issam Gaamoussi
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Gabriel E. Bertolesi
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Géraldine Gouhier
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Chang-Chun Ling
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
29
|
MRI probes based on C6-peracetate β-cyclodextrins: Synthesis, gadolinium complexation and in vivo relaxivity studies. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
A unique polyoxometalate-based hybrid consisting of both pseudo-polyrotaxane and interdigitated motifs: Synthesis, structure and luminescent property. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
A [1]rotaxane with two threaded α-cyclodextrin (α-CD) wheels was synthesized in 92% yield using a one-pot process at room temperature that employed spontaneous α-CD threading onto a 12-carbon alkyl chain in water followed by an oxime condensation reaction that attached two boronic acid-containing stopper groups. Rapid pirouetting of the threaded α-CD wheels around the encapsulated dumbbell was switched "ON" or "OFF" by the presence of chemical additives that controlled boronate ester bond formation between the interlocked components.
Collapse
Affiliation(s)
- Qi-Wei Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Jaroslav Zajíček
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
32
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
33
|
Isaac M, Pallier A, Szeremeta F, Bayle PA, Barantin L, Bonnet CS, Sénèque O. MRI and luminescence detection of Zn2+ with a lanthanide complex–zinc finger peptide conjugate. Chem Commun (Camb) 2018; 54:7350-7353. [DOI: 10.1039/c8cc04366c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc finger peptide provides an excellent scaffold for the design of lanthanide-based luminescent and MRI Zn2+-responsive probes
Collapse
Affiliation(s)
- Manon Isaac
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | - Agnès Pallier
- Centre de Biophysique Moléculaire
- UPR CNRS 4301
- Université d'Orléans
- F-45071 Orléans
- France
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire
- UPR CNRS 4301
- Université d'Orléans
- F-45071 Orléans
- France
| | | | | | - Célia S. Bonnet
- Centre de Biophysique Moléculaire
- UPR CNRS 4301
- Université d'Orléans
- F-45071 Orléans
- France
| | | |
Collapse
|
34
|
Wenz G. Superstructures with cyclodextrins: Chemistry and applications IV. Beilstein J Org Chem 2017; 13:2157-2159. [PMID: 29114322 PMCID: PMC5669222 DOI: 10.3762/bjoc.13.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gerhard Wenz
- Saarland University, Organic Macromolecular Chemistry, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|