1
|
Zhang X, Qi L, Ren T, Zhang Y, Yu S. Ru-Catalyzed Switchable Reactions of Acrylic Acids with Glyoxylate: Access to Functionalized γ-Butenolides. Org Lett 2024; 26:10658-10664. [PMID: 39648499 DOI: 10.1021/acs.orglett.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
We herein report a switchable coupling of acrylic acids with ethyl glyoxylate under ruthenium catalysis enabling the synthesis of diverse functionalized γ-butenolides. The carboxyl-directed vinylic C-H cleavage and dual nucleophilic addition to aldehyde are achieved to deliver hydroxymethylated butanolides under mild and oxidant-free conditions. Alternatively, a controlled and unprecedented tandem C-H cyclization/oxidative homocoupling reaction is realized by using silver salt as the oxidant to generate a range of dimeric butenolides bearing vicinal all-carbon quaternary centers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Tianci Ren
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
2
|
Westwood MT, Omar Farah A, Wise HB, Sinfield M, Robichon C, Prindl MI, Cordes DB, Ha-Yeong Cheong P, Smith AD. Isothiourea-Catalysed Acylative Kinetic Resolution of Tertiary Pyrazolone Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407983. [PMID: 39177177 DOI: 10.1002/anie.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %). The application of this KR method to tertiary alcohols derived directly from a natural product (geraniol), alongside pharmaceutically relevant drug compounds (indomethacin, gemfibrozil and probenecid), with high efficiency (s >100) is also described. The KR process is readily amenable to scale up using bench grade solvents and reagents, with effective resolution on a 50 g (0.22 mol) scale demonstrated. The key structural motif leading to excellent selectivity in this KR process has been probed through computation, with an NC=O⋅⋅⋅isothiouronium interaction from substrate to acylated catalyst observed within the favoured transition state. Similarly, the effect of C(5)-aryl substitution that leads to reduced experimental selectivity is probed, with a competitive π-isothiouronium interaction identified as leading to reduced selectivity.
Collapse
Affiliation(s)
- Matthew T Westwood
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Henry B Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Mike Sinfield
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Camille Robichon
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Martha I Prindl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeong Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
3
|
Natarajan P, Subramaniam SV, Peruncheralathan S. Organocatalytic Dearomatization of 5-Aminopyrazoles: Synthesis of 4-Hydroxypyrazolines. J Org Chem 2024; 89:10258-10271. [PMID: 38989804 DOI: 10.1021/acs.joc.4c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dearomatization is a fundamental chemical reaction that affords complex three-dimensional heterocyclic frameworks. We disclose the first organocatalytic dearomatization of 5-aminopyrazoles, which yields a range of structurally diversified C4-hydroxylated pyrazolines with yields of ≤95% in <1.5 h at room temperature. This catalytic process is achieved using in situ-generated hypervalent iodine. The method also yields a spirolactone via an intramolecular dearomatization process. Furthermore, we demonstrate that substrate-directed reduction of the resulting iminopyrazoline leads to 4,5-difunctionalized pyrazoline as a single diastereomer. Mechanistic studies suggest that the reaction proceeds through a dearomatized cationic intermediate.
Collapse
Affiliation(s)
- Pradeep Natarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| |
Collapse
|
4
|
Wang Y, Liu J, Wang Y, Du X, Song H, Fang L, Wu L, Zhang T. Visible-Light-Promoted Aerobic α-Thiocyanation of Carbonyl Compounds with Ammonium Thiocyanate. J Org Chem 2024; 89:3453-3470. [PMID: 38335461 DOI: 10.1021/acs.joc.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
In the present study, we successfully developed an efficient thiocyanation of carbonyl compounds by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source under visible light in air (O2) at room temperature. This unified strategy is very facile for thiocyanation of various carbonyl compound derivatives (β-keto esters, β-keto amides, pyrazo-5-ones, isoxazol-5-ones, etc.). More importantly, the reaction proceeded smoothly without the addition of a photocatalyst and strong oxidant, ultimately minimizing the production of chemical waste. Furthermore, this green and sustainable synthetic chemistry can be used in the late-stage functionalization (LSF) of biorelevant compounds, which offers unique opportunities to achieve smooth and clean thiocyanation of drugs under mild reaction conditions.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jie Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Haojie Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
5
|
Dahal A, Lo M, Singh S, Vo H, ElHage D, Jois SD, Murru S. 1,3-diarylpyrazolones as potential anticancer agents for non-small cell lung cancer: Synthesis and antiproliferative activity evaluation. Chem Biol Drug Des 2022; 99:620-633. [PMID: 35156777 PMCID: PMC10127554 DOI: 10.1111/cbdd.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
A series of pyrazolone compounds with different substitution patterns have been synthesized using microwave-assisted methods and evaluated their in vitro antiproliferative activity against human lung adenocarcinoma cell lines (A549 and NCI-H522). Among the tested compounds, the pyrazolone P7 exhibited high antiproliferative activity against both A549 and NCIH522 cancer cell lines while being 10 times less cytotoxic to non-cancerous cells. Moreover, our compounds P7 and P11 exhibited higher antiproliferative activity and selectivity against A549 and NCIH522 cells compared with the clinically approved drugs Afatinib and Gefitinib. The cell cycle analysis showed that the compound P7 and P11 arrests the cell cycle at G0/G1 phase, whereas the compounds P13 and P14 involved in G2/M phase arrest. The results from antiproliferative activity screening, cell cycle analysis, and kinase profiling indicate that the suitably substituted 1,3-diarylpyrazolones exhibit high antiproliferative activity against non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Mary Lo
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Sitanshu Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Huu Vo
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Denzel ElHage
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisina, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education & Sciences, University of Louisiana Monroe, Monroe, Louisina, USA
| |
Collapse
|
6
|
Xu C, Li X, Bai L. Direct Aerobic α-Hydroxylation of Arylacetates for the Synthesis of Mandelates. J Org Chem 2022; 87:4298-4304. [PMID: 35245055 DOI: 10.1021/acs.joc.1c03149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerobic α-hydroxylation of α-methylene esters has proven challenging due to overoxidation and hydrolysis of the materials. In this article, KOtBu-promoted TBAB-catalyzed α-hydroxylation of α-methylene aryl esters using O2 as the oxygen source has been developed. Both low reaction temperature and catalyst TBAB are keys to success. This reaction provides an environmentally friendly and low-cost approach to mandelates, which are valuable building blocks and widely present in pharmaceuticals.
Collapse
Affiliation(s)
- Changming Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiangfan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lei Bai
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
7
|
Visible light-promoted enantioselective aerobic oxidation of pyrazolones by phase transfer catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Feng KX, Tang CK, Shen QY, Xia AB, Huang LS, Zhou ZY, Zhang X, Du XH, Xu DQ. Enantioselective Syntheses of C2-Symmetric Pyrazolones and Diones via One-Pot Organo-/Iodine Sequential Catalysis. Org Lett 2021; 23:6750-6755. [PMID: 34406770 DOI: 10.1021/acs.orglett.1c02330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic diastereo- and enantioselective syntheses of C2-symmetric axially chiral 1,4-dicarbonyl derivatives with 2,3-quaternary stereocenters were achieved by utilizing an organo-/iodine binary catalytic strategy. The reactions proceeded well under mild conditions without metals or strong bases.
Collapse
Affiliation(s)
- Kai-Xiang Feng
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng-Ke Tang
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiao-Yu Shen
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ai-Bao Xia
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li-Sha Huang
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhan-Yu Zhou
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xing Zhang
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao-Hua Du
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Li Y, Feng X, Jia X, Jin H, Chen F, Zhao Y, Zhang J, Wang J, Guo B, Tang L, Yang Y. Regiodivergent Functionalization of Isoquinoline‐1,3(2
H
,4
H
)‐dione Derivatives via Aerobic Umpolung. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying‐Xian Li
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Xiao‐Bing Feng
- Xiao-Bing Feng Department of orthopaedics People's Hospital of Luzhou 646000 Luzhou P. R. China
| | - Xue‐Min Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Huang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Fei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Yong‐Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Ji‐Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Jian‐Ta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases Guizhou Medical University 550004 Guiyang P. R. China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 550014 Guiyang P. R. China
| |
Collapse
|
10
|
Free-radical and electrophilic functionalization of pyrazol-3-ones with C–O or C–N bond formation (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02885-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Mogensen SB, Taylor MK, Lee JW. Homocoupling Reactions of Azoles and Their Applications in Coordination Chemistry. Molecules 2020; 25:E5950. [PMID: 33334079 PMCID: PMC7765535 DOI: 10.3390/molecules25245950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Pyrazole, a member of the structural class of azoles, exhibits molecular properties of interest in pharmaceuticals and materials chemistry, owing to the two adjacent nitrogen atoms in the five-membered ring system. The weakly basic nitrogen atoms of deprotonated pyrazoles have been applied in coordination chemistry, particularly to access coordination polymers and metal-organic frameworks, and homocoupling reactions can in principle provide facile access to bipyrazole ligands. In this context, we summarize recent advances in homocoupling reactions of pyrazoles and other types of azoles (imidazoles, triazoles and tetrazoles) to highlight the utility of homocoupling reactions in synthesizing symmetric bi-heteroaryl systems compared with traditional synthesis. Metal-free reactions and transition-metal catalyzed homocoupling reactions are discussed with reaction mechanisms in detail.
Collapse
Affiliation(s)
- Steffen B. Mogensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark;
| | - Mercedes K. Taylor
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark;
| |
Collapse
|
12
|
Tong ML, Leusch LT, Holzschneider K, Kirsch SF. Rubazonic Acids and Their Synthesis. J Org Chem 2020; 85:6008-6016. [PMID: 32293178 DOI: 10.1021/acs.joc.0c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rubazonic acids are a class of dyes that are long-known, but studies on their syntheses and uses are rare. We now describe an experimentally simple and highly practical one-pot procedure for their synthesis starting from easily accessible 1H-pyrazol-5(4H)-ones. This protocol provides direct access to a broad range of the desired rubazonic acid derivatives through oxidative diazidation combined with a reductive work-up, without the need to isolate the potentially hazardous diazido compounds generated en route the target compounds. We also show how more challenging variants of rubazonic acid are efficiently prepared using an alternative two-step procedure and controlled hydrogenation conditions.
Collapse
Affiliation(s)
- My Linh Tong
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Lena Theresa Leusch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Kristina Holzschneider
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Stefan F Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
13
|
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J. Organocatalytic Asymmetric Michael Addition of Pyrazol-5-ones to β-Trifluoromethyl-α,β-unsaturated Ketones: Stereocontrolled Construction of Vicinal Quaternary and Tertiary Stereocenters. J Org Chem 2019; 85:574-584. [DOI: 10.1021/acs.joc.9b02676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyao Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanmin He
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jingqi Zhou
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinjuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
14
|
Shu C, Liu H, Slawin AMZ, Carpenter-Warren C, Smith AD. Isothiourea-catalysed enantioselective Michael addition of N-heterocyclic pronucleophiles to α,β-unsaturated aryl esters. Chem Sci 2019; 11:241-247. [PMID: 34040717 PMCID: PMC8133005 DOI: 10.1039/c9sc04303a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The isothiourea-catalysed enantioselective Michael addition of 3-aryloxindole and 4-substituted-dihydropyrazol-3-one pronucleophiles to α,β-unsaturated p-nitrophenyl esters is reported. This process generates products containing two contiguous stereocentres, one quaternary, in good yields and excellent enantioselectivities (>30 examples, up to > 95 : 5 dr and 99 : 1 er). This protocol harnesses the multifunctional ability of p-nitrophenoxide to promote effective catalysis. In contrast to previous methodologies using tertiary amine Lewis bases, in which the pronucleophile was used as the solvent, this work allows bespoke pronucleophiles to be used in stoichiometric quantities. The isothiourea-catalysed enantioselective Michael addition of 3-aryloxindole and 4-substituted-dihydropyrazol-3-one pronucleophiles to α,β-unsaturated p-nitrophenyl esters is reported.![]()
Collapse
Affiliation(s)
- Chang Shu
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Honglei Liu
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Cameron Carpenter-Warren
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| |
Collapse
|
15
|
Zhang YK, Wang B. Synthesis of α-Ketoamides from β-Ketonitriles and Primary Amines: A Catalyst-Free Oxidative Decyanation-Amidation Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ya-Kai Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Haihe Education Park, 38 Tongyan Road 300353 Tianjin P. R. China
| | - Bin Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Haihe Education Park, 38 Tongyan Road 300353 Tianjin P. R. China
| |
Collapse
|
16
|
Zheng Q, Chen J, Rao GW. Recent Advances in C-O Bond Construction via C-H Activation. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019040249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Krylov IB, Budnikov AS, Lopat'eva ER, Nikishin GI, Terent'ev AO. Mild Nitration of Pyrazolin-5-ones by a Combination of Fe(NO 3 ) 3 and NaNO 2 : Discovery of a New Readily Available Class of Fungicides, 4-Nitropyrazolin-5-ones. Chemistry 2019; 25:5922-5933. [PMID: 30834586 DOI: 10.1002/chem.201806172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/24/2019] [Indexed: 02/02/2023]
Abstract
4-Nitropyrazolin-5-ones have been synthesized by the nitration of pyrazolin-5-ones at room temperature by employing the Fe(NO3 )3 /NaNO2 system. The method demonstrated selectivity towards the 4-position of pyrazolin-5-ones even in the presence of NPh and allyl substituents, which are sensitive to nitration. It was shown that other systems containing FeIII and nitrites, namely Fe(NO3 )3 /tBuONO, Fe(ClO4 )3 /NaNO2 , and Fe(ClO4 )3 /tBuONO, were also effective. Presumably, FeIII oxidizes the nitrite (NaNO2 or tBuONO) to form the NO2 free radical, which serves as the nitrating agent for pyrazolin-5-ones. The synthesized 4-nitropyrazolin-5-ones were discovered to be a new class of fungicides. Their in vitro activities against phytopathogenic fungi were found comparable or even superior to those of commercial fungicides (fluconazole, clotrimazole, triadimefon, and kresoxim-methyl). These results represent a promising starting point for the development of a new type of plant protection agents that can be easily synthesized from widely available reagents.
Collapse
Affiliation(s)
- Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of, Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation.,Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russian Federation
| |
Collapse
|
18
|
Velasco M, Hernández U, Terán JL, Gnecco D, Orea ML, Aparicio DM, Gómez-Calvario V, Bernès S, Juárez JR. Stereoconvergent synthesis of N-Boc-(2R,3S)-3-hydroxy-2-phenylpiperidine. Tetrahedron Lett 2019; 60:820-824. [DOI: 10.1016/j.tetlet.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Vil’ VA, Gomes GDP, Ekimova MV, Lyssenko KA, Syroeshkin MA, Nikishin GI, Alabugin IV, Terent’ev AO. Five Roads That Converge at the Cyclic Peroxy-Criegee Intermediates: BF3-Catalyzed Synthesis of β-Hydroperoxy-β-peroxylactones. J Org Chem 2018; 83:13427-13445. [DOI: 10.1021/acs.joc.8b02218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Gabriel dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32309, United States
| | - Maria V. Ekimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Konstantin A. Lyssenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991 Russian Federation
| | - Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32309, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| |
Collapse
|
20
|
Eller GA, Vilkauskaitė G, Šačkus A, Martynaitis V, Mamuye AD, Pace V, Holzer W. An unusual thionyl chloride-promoted C-C bond formation to obtain 4,4'-bipyrazolones. Beilstein J Org Chem 2018; 14:1287-1292. [PMID: 29977396 PMCID: PMC6009192 DOI: 10.3762/bjoc.14.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Dialkyl 5,5'-dioxo-4,4'-bipyrazole-4,4'-dicarboxylates are readily obtained by the reaction of 5-hydroxypyrazole-4-carboxylates in refluxing thionyl chloride. The obtained diesters can be transformed into the corresponding 4,4'-bipyrazoles via alkaline hydrolysis and subsequent decarboxylation. Detailed NMR spectroscopic investigations (1H, 13C, 15N) were undertaken with all products prepared. Moreover, the structure of a representative 5,5'-dioxo-4,4'-bipyrazole-4,4'-dicarboxylate was confirmed by X-ray crystal structure analysis.
Collapse
Affiliation(s)
- Gernot A Eller
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Gytė Vilkauskaitė
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.,Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania.,Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423, Kaunas, Lithuania
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Ashenafi Damtew Mamuye
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
21
|
Xu S, Wang G, Xu F, Li W, Lin A, Yao H, Xu J. Concise Total Synthesis of (±)-Deguelin and (±)-Tephrosin Using a Vinyl Iodide as a Key Building Block. JOURNAL OF NATURAL PRODUCTS 2018; 81:1055-1059. [PMID: 29442505 DOI: 10.1021/acs.jnatprod.7b00794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A concise and protecting-group-free total synthesis of the antiproliferative natural product (±)-deguelin (2) was accomplished in four steps and 62% overall yield from commercially available precursors. The key transformation employed a vinyl iodide as the pivotal building block to construct the 4-acylchromene substructure present in deguelin. Subsequent Cu2O-mediated α-hydroxylation of deguelin (2) afforded tephrosin (3) in 90% yield.
Collapse
Affiliation(s)
- Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Guangyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Feijie Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Wenlong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| |
Collapse
|
22
|
Liu S, Bao X, Wang B. Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chem Commun (Camb) 2018; 54:11515-11529. [DOI: 10.1039/c8cc06196c] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article reports recent advances in the asymmetric diverse derivatizations of the pyrazolone scaffold.
Collapse
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
23
|
Lim B, Park S, Park JH, Gam J, Kim S, Yang JW, Lee J. A metal-free and mild approach to 1,3,4-oxadiazol-2(3H)-ones via oxidative C–C bond cleavage using molecular oxygen. Org Biomol Chem 2018; 16:2105-2113. [DOI: 10.1039/c7ob03188b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free aerobic oxidative C–C bond cleavage reaction for the synthesis of 1,3,4-oxadiazol-2(3H)-ones is described.
Collapse
Affiliation(s)
- Bumhee Lim
- College of Pharmacy
- Research Institute of Pharmaceutical sciences
- Seoul National University
- Seoul 08826
- Korea
| | - Seunggun Park
- College of Pharmacy
- Research Institute of Pharmaceutical sciences
- Seoul National University
- Seoul 08826
- Korea
| | - Jae Hyun Park
- College of Pharmacy
- Research Institute of Pharmaceutical sciences
- Seoul National University
- Seoul 08826
- Korea
| | - Jongsik Gam
- Department of Medicinal Bioscience
- College of Interdisciplinary & Creative Studies
- Konyang University
- Nonsan
- Korea
| | - Sanghee Kim
- College of Pharmacy
- Research Institute of Pharmaceutical sciences
- Seoul National University
- Seoul 08826
- Korea
| | - Jung Woon Yang
- Department of Energy Science
- Sungkyunkwan University
- Suwon 16419
- South Korea
| | - Jeeyeon Lee
- College of Pharmacy
- Research Institute of Pharmaceutical sciences
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
24
|
Krylov IB, Paveliev SA, Shelimov BN, Lokshin BV, Garbuzova IA, Tafeenko VA, Chernyshev VV, Budnikov AS, Nikishin GI, Terent'ev AO. Selective cross-dehydrogenative C–O coupling of N-hydroxy compounds with pyrazolones. Introduction of the diacetyliminoxyl radical into the practice of organic synthesis. Org Chem Front 2017. [DOI: 10.1039/c7qo00447h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oxidative C–O coupling of oximes, N-hydroxyphthalimide, and N-hydroxybenzotriazole with pyrazolones via formation of N-oxyl radicals is described.
Collapse
Affiliation(s)
- Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Boris N. Shelimov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Boris V. Lokshin
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Irina A. Garbuzova
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Viktor A. Tafeenko
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russian Federation
| | - Vladimir V. Chernyshev
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russian Federation
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
| | - Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
- Higher Chemical College of the Russian Academy of Sciences
- Mendeleev University of Chemical Technology of Russia
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| |
Collapse
|