1
|
Chen Q, Du Z, Liu C, Wang X, Yue W, Wang Y, Peng Z. TCT-Mediated and Water-Controlled Synthesis of Benzofuran-3(2 H)-ones Bearing a Quaternary Carbon Center via a Radical Process Using Dimethyl Sulfoxide as a Dual Synthon. J Org Chem 2025; 90:5523-5537. [PMID: 40207862 DOI: 10.1021/acs.joc.5c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
An efficient and attractive method for the synthesis of valuable benzofuran-3(2H)-one derivatives bearing a quaternary center in one step by employing dimethyl sulfoxide (DMSO) as a dual synthon under metal-free conditions has been developed. In this reaction, DMSO activated by cyanuric chloride (TCT) provides two different units (CH3 and SMe) in the target molecules, and the construction of the quaternary carbon center in the benzofuran-3(2H)-ones can be controlled by the addition of water. Furthermore, the functional group compatibility and synthetic value were demonstrated by scope evaluation and gram-scale experiments. The mechanistic studies show that the reaction may proceed via a radical process.
Collapse
Affiliation(s)
- Qing Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhao Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chuanqi Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiaoqian Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wantong Yue
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yilei Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhihua Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
2
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
3
|
Zhu WJ, Yu X, Liu HY, Liu Y, Zhao JB, Zhang PF, Xia CC, Li FR. Synthesis of ( E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2 H)-ones from ( E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oximes and iodobenzenes via a palladium-catalyzed dearomative arylation/oxidation reaction. Org Biomol Chem 2023; 21:6307-6311. [PMID: 37492010 DOI: 10.1039/d3ob00772c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A new method has been successfully developed that offers a facile and reliable approach for synthesizing (E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2H)-one, providing 28 compounds. This optimized process enables efficient preparation of a wide range of compounds using readily available (E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oxime and iodobenzene, and provides alternative ideas for the structural modification of benzofuran ketones.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Xiao Yu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Hong-Yan Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Yi Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Jin-Bo Zhao
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Peng-Fei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng-Cai Xia
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Fu-Rong Li
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| |
Collapse
|
4
|
Shi L, Xue X, Hong B, Li Q, Gu Z. Dirhodium(II)/Phosphine Catalyst with Chiral Environment at Bridging Site and Its Application in Enantioselective Atropisomer Synthesis. ACS CENTRAL SCIENCE 2023; 9:748-755. [PMID: 37122446 PMCID: PMC10141619 DOI: 10.1021/acscentsci.2c01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 05/03/2023]
Abstract
A dirhodium(II)/phosphine catalyst with a chiral environment at the bridging site was developed for the asymmetric arylation of phenanthrene-9,10-diones with arylboronic acids. In contrast to the classic chiral bridging carboxylic acid (or derivatives) ligand strategy of bimetallic dirhodium(II) catalysis, in this reaction, tuning both axial and bridging ligands realized the first Rh2(OAc)4/phosphine-catalyzed highly enantioselective carbonyl addition reaction. The kinetic analysis reveals that dirhodium(II) and arylboronic acid follow the first-order kinetics, while phenanthrene-9,10-dione is zeroth-order. These data supported the proposed catalytic cycle, where the key intermediate in the rate-determining step involved the dirhodium(II) complex and arylboronic acid. Finally, axially chiral biaryls were prepared based on a newly developed oxidative ring-opening reaction of α-hydroxyl ketones with a base and molecular oxygen, which featured a central-to-axial chirality transfer radical β-scission step.
Collapse
Affiliation(s)
- Lei Shi
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaoping Xue
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| | - Qigang Li
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Huang LZ, Xuan Z, Park JU, Kim JH. Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using N-Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Org Lett 2022; 24:6951-6956. [PMID: 36121333 DOI: 10.1021/acs.orglett.2c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual Rh(II)/Pd(0) relay catalysis of N-sulfonyl triazoles and 2-hydroxymethylallyl carbonates has been developed, which affords N-sulfonyl pyrrolidines in moderate to good yields with high diastereoselectivities. The reaction proceeds via a relay mechanism involving O-H insertion onto the α-imino Rh(II)-carbene, [3,3]-sigmatropic rearrangement, dipole formation through Pd(0)-catalyzed decarboxylation, and intramolecular N-allylation, leading to the formation of multiple bonds in a one-pot operation.
Collapse
Affiliation(s)
- Liang-Zhu Huang
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Zi Xuan
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
6
|
Jiang J, Liu J, Yang Z, Zheng L, Liu ZQ. Three‐Component Synthesis of Benzofuran‐3(2H)‐ones with Tetrasubstituted Carbon Stereocenters via Rh(III)‐Catalyzed C‐H/C‐C Bond Activation and Cascade Annulation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Ru-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes via P-Chiral Monophosphorous Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123898. [PMID: 35745017 PMCID: PMC9231018 DOI: 10.3390/molecules27123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Chiral alcohols are among the most widely applied in fine chemicals, pharmaceuticals and agrochemicals. Herein, the Ru-monophosphine catalyst formed in situ was found to promote an enantioselective addition of aliphatic aldehydes with arylboronic acids, delivering the chiral alcohols in excellent yields and enantioselectivities and exhibiting a broad scope of aliphatic aldehydes and arylboronic acids. The enantioselectivities are highly dependent on the monophosphorous ligands. The utility of this asymmetric synthetic method was showcased by a large-scale transformation.
Collapse
|
8
|
Zhu H, Zhou Q, Liu N, Xing J, Yao W, Dou X. Relay Rhodium(I)/Acid Catalysis for Rapid Access to Benzo‐2H‐pyrans and Benzofurans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Zhu DX, Liu JG, Xu MH. Stereodivergent Synthesis of Enantioenriched 2,3-Disubstituted Dihydrobenzofurans via a One-Pot C-H Functionalization/Oxa-Michael Addition Cascade. J Am Chem Soc 2021; 143:8583-8589. [PMID: 34061536 DOI: 10.1021/jacs.1c03498] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A one-pot rhodium-catalyzed C-H functionalization/organocatalyzed oxa-Michael addition cascade reaction has been developed. This methodology enables the stereodivergent synthesis of diverse 2,3-disubstituted dihydrobenzofurans with broad functional group compatibility in good yields with high levels of stereoselectivity under exceptionally mild conditions. The full complement of stereoisomers of chiral 2,3-disubstituted dihydrobenzofurans and 3,4-disubstituted isochromans could be accessed at will by appropriate permutations of the two chiral catalysts. The current work provides a rare example of two chiral catalysts independently controlling two contiguous stereogenic centers subsequently via a two-step reaction in a single operation.
Collapse
Affiliation(s)
- Dong-Xing Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jian-Guo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
10
|
Li S, Wang Z, Xiao H, Bian Z, Wang JJ. Enantioselective synthesis of indole derivatives by Rh/Pd relay catalysis and their anti-inflammatory evaluation. Chem Commun (Camb) 2021; 56:7573-7576. [PMID: 32510073 DOI: 10.1039/d0cc03158e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient Rh/Pd relay catalyzed intermolecular and cascade intramolecular hydroamination for the synthesis of exclusive trans 1-indolyl dihydronaphthalenols (up to 88% yield, 99% ee) is described under mild conditions. Moreover, the in silico and in vitro screening showed that the novel 1-indolyl dihydronaphthalenol products are potent lead compounds for treating inflammation disease.
Collapse
Affiliation(s)
- Sifeng Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zihao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518066, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Jun Joelle Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Fan C, Wu Q, Zhu C, Wu X, Li Y, Luo Y, He JB. Enantioselective Conjugate Addition of Aryl Halides and Triflates to Electron-Deficient Olefins via Nickel- and Rhodium-Catalyzed Sequential Relay Reactions. Org Lett 2019; 21:8888-8892. [PMID: 31592667 DOI: 10.1021/acs.orglett.9b02940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric conjugate addition of aryl halides or aryl triflates to electron-deficient olefins was realized by sequential Miyaura borylation and Hayashi-Miyaura conjugate addition in one pot. A nickel-catalyzed borylation of aryl halides or triflates and a rhodium-chiral diene complex catalyzed enantioselective conjugate addition was executed as a pair of relay reactions as a more efficient and greener protocol.
Collapse
Affiliation(s)
- Chenrui Fan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Qixu Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yougui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yunfei Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Jian-Bo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| |
Collapse
|
12
|
Sivamuthuraman K, Kesavan V. Catalytic enantioselective Michael addition of 2-substituted benzofuran-3-ones to 2-enoyl pyridines. Org Biomol Chem 2019; 17:7166-7171. [PMID: 31328210 DOI: 10.1039/c9ob01069f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic diastereo- and enantioselective synthesis of 2,2'-disubstituted benzofuran-3-ones bearing adjacent quaternary and tertiary stereocenters has been achieved through Michael addition of 2-substituted benzofuran-3-ones to 2-enoyl pyridines. Both the enantiomeric forms of the major diastereomer were obtained using l-proline derived squaramide and quinine derived bis squaramide with excellent yield (up to 98%) and stereoselectivities (up to 97 : 3 dr and 98% ee). The control experiment revealed that the presence and position of nitrogen atoms in the 2-enoylpyridine have played a crucial role in the stereochemical outcome of the product.
Collapse
Affiliation(s)
- Koilpitchai Sivamuthuraman
- Koilpitchai Sivamuthuraman, Venkitasamy Kesavan, Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Venkitasamy Kesavan
- Koilpitchai Sivamuthuraman, Venkitasamy Kesavan, Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
13
|
Huang LZ, Xuan Z, Jeon HJ, Du ZT, Kim JH, Lee SG. Asymmetric Rh(II)/Pd(0) Relay Catalysis: Synthesis of α-Quaternary Chiral β-Lactams through Enantioselective C–H Insertion/Diastereoselective Allylation of Diazoamides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01687] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang-Zhu Huang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, School of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
- Department of Chemistry and Nano Science (BK21 Plus), Ewha Womans University, 120-750 Seoul, Korea
| | - Zi Xuan
- Department of Chemistry and Nano Science (BK21 Plus), Ewha Womans University, 120-750 Seoul, Korea
| | - Hyun Ji Jeon
- Department of Chemistry and Nano Science (BK21 Plus), Ewha Womans University, 120-750 Seoul, Korea
| | - Zhen-Ting Du
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, School of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Sang-gi Lee
- Department of Chemistry and Nano Science (BK21 Plus), Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
14
|
Chang MY, Wu YS, Chen HY. CuI-Mediated Synthesis of Sulfonyl Benzofuran-3-ones and Chroman-4-ones. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yan-Shin Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Liu YJ, Ding YL, Niu SS, Ma JT, Cheng Y. N-Heterocyclic Carbene/Palladium Cascade Catalysis: Construction of 2,2-Disubstitiuted Benzofuranones from the Reaction of 3-(2-Formylphenoxy)propenoates with Allylic Esters. J Org Chem 2018; 83:1913-1923. [PMID: 29319303 DOI: 10.1021/acs.joc.7b02849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cascade catalysis involving N-heterocyclic carbene (NHC) and palladium/ligand was demonstrated. In the presence of a triazolium salt, palladium catalyst, and base, the reaction of 3-(2-formylphenoxy)propenoates and allylic esters proceeded efficiently under mild conditions to afford 2-allylbenzofuran-3-one-2-acetates in moderated to good yields. An asymmetric cascade catalysis was achieved when (R)-BINAP was employed as a chiral ligand, producing enantiomerically enriched 2,2-disubstitiuted benzofuran-3-one derivatives with an ee up to 81%.
Collapse
Affiliation(s)
- Yu-Jie Liu
- College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ya-Li Ding
- College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Shuang-Shuo Niu
- College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Jin-Tao Ma
- College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
16
|
Sawant DM, Sharma S, Pathare RS, Joshi G, Kalra S, Sukanya S, Maurya AK, Metre RK, Agnihotri VK, Khan S, Kumar R, Pardasani RT. Relay tricyclic Pd(ii)/Ag(i) catalysis: design of a four-component reaction driven by nitrene-transfer on isocyanide yields inhibitors of EGFR. Chem Commun (Camb) 2018; 54:11530-11533. [DOI: 10.1039/c8cc05845h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A four-component reactions promoted by Pd(ii)/Ag(i) relay catalysis paved the way for the development of a new EGFR inhibitor.
Collapse
|