1
|
Ge S, Zhu YM, Xu XP, Zi Y, Ji SJ. Palladium-catalyzed cascade cyclization of isocyanides with di-( o-iodophenyl)sulfonylguanidines: access to heterocyclic fused quinazolines. Chem Commun (Camb) 2024; 60:14613-14616. [PMID: 39564650 DOI: 10.1039/d4cc04084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A palladium-catalyzed cascade cyclization reaction of di-o-iodophenyl sulfonylguanidines with isocyanides for the efficient and selective synthesis of 5- or 6-membered heterocyclic fused quinazolines has been developed. Diverse functional groups are well tolerated, and this method has been successfully applied to a larger scale synthesis.
Collapse
Affiliation(s)
- Shen Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
2
|
Shi B, Xiao M, Zhao JP, Zhang Z, Xiao WJ, Lu LQ. Synthesis of Chiral Endocyclic Allenes and Alkynes via Pd-Catalyzed Asymmetric Higher-Order Dipolar Cycloaddition. J Am Chem Soc 2024; 146:26622-26629. [PMID: 39293040 DOI: 10.1021/jacs.4c10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A Pd-catalyzed asymmetric higher-order dipolar cycloaddition between allenyl carbonates and azadienes is achieved by exploiting novel alkylidene-π-allyl-Pd dipoles. This research provides a modular platform for the synthesis of challenging chiral endocyclic allenes bearing a medium-sized heterocyclic motif and a centrally chiral stereocenter in good yields with high enantio- and diastereoselectivities (29 examples, up to 97% yield, 97:3 er and >19:1 dr). Experimental and computational studies elucidate the possible reaction mechanism and the observed stereochemical results. Based on the mechanistic understanding, a new π-propargyl-Pd dipole was designed to further extend the success of the higher order dipolar cycloaddition strategy to the synthesis of 10-membered endocyclic alkynes from propargyl carbonates and azadienes (13 examples, up to 98% yield and 94.5:5.5 er).
Collapse
Affiliation(s)
- Bin Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Meng Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jin-Pu Zhao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430082, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Tang Y, Sun X, Tan Y, Wang L, Xiong Y, Guo H. Palladium-Catalyzed (4 + 1) Annulation of 4-Vinylbenzodioxinones with Sulfur Ylides: Diastereoselective Synthesis of Dihydrobenzofuran Derivatives. J Org Chem 2024; 89:8951-8959. [PMID: 38814141 DOI: 10.1021/acs.joc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Palladium-catalyzed (4 + 1) annulation of 4-vinylbenzodioxinones with sulfur ylides has been developed to afford various dihydrobenzofuran derivatives in moderate to high yields with excellent diastereoselectivities. The scale-up reaction and further derivations of the product worked well, demonstrating the application potential of the current reaction in organic synthesis.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaojing Sun
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yu Tan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yanmei Xiong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Zhang T, Feng H. Skeletal Editing of Isatins for Heterocycle Molecular Diversity. CHEM REC 2024; 24:e202400024. [PMID: 38847062 DOI: 10.1002/tcr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/28/2024]
Abstract
Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013-2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C-C bond and C-N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.
Collapse
Affiliation(s)
- Tiantian Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
5
|
Yu TT, Huang PT, Chen BH, Zhong YJ, Han B, Peng C, Zhan G, Huang W, Zhao Q. Construction of 3,4-Dihydroquinolone Derivatives through Pd-Catalyzed [4+2] Cycloaddition of Vinyl Benzoxazinanones with α-Alkylidene Succinimides. J Org Chem 2024; 89:3279-3291. [PMID: 38377542 DOI: 10.1021/acs.joc.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The construction of 3,4-dihydroquinolone derivatives has attracted a considerable amount of attention due to their extensive applications in medicinal chemistry. In this study, we present the Pd-catalyzed [4+2] cycloaddition of vinyl benzoxazinanones with α-alkylidene succinimides for the efficient synthesis of 3,4-dihydroquinolones. This approach presents numerous advantages, including the ready availability of starting materials, mild reaction conditions without the use of additional bases, and a wide range of substrates. In particular, all of the desired products can be easily afforded in high yields (≤99%) and excellent diastereoselectivities (>20:1). The practicality and reliability of this strategy were demonstrated by the successful scale-up synthesis and subsequent straightforward synthetic transformations.
Collapse
Affiliation(s)
- Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng-Ting Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
6
|
Lin H, Hu X, Han B, Yang X, Deng Y, Luo J, Ge Y, Mao B, Wang C, Yuan C. Facile Synthesis of Quinoline-Substituted 3-Hydroxy-2-oxindoles and 3-Amino-2-oxindoles via a Palladium-Catalyzed Cascade Intramolecular Cyclization/Intermolecular Nucleophilic Addition Reaction. J Org Chem 2024; 89:3413-3418. [PMID: 38377573 DOI: 10.1021/acs.joc.3c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
An efficient cascade intramolecular cyclization/intermolecular nucleophilic addition reaction of allenyl benzoxazinone with isatin or isatin-derived ketimine has been established by using Pd0-π-Lewis base catalysis. A series of 3-hydroxy-2-oxindoles and 3-amino-2-oxindoles with quaternary carbon atoms at the C3 position were synthesized in good yields under mild conditions through this protocol.
Collapse
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Xinyan Hu
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Bing Han
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Xianru Yang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Yiwei Deng
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Jiayi Luo
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| | - Biming Mao
- Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Chang Wang
- Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China
| |
Collapse
|
7
|
Tang Y, Zhang R, Dong Y, Yu S, Wu Y, Xiao Y, Guo H. 4-Vinylbenzodioxinones as a new type of precursor for palladium-catalyzed (4+3) cycloaddition of azomethine imines. Chem Commun (Camb) 2024; 60:1436-1439. [PMID: 38206119 DOI: 10.1039/d3cc06012h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, benzo-fused cyclic carbonates were designed and synthesized as a new type of precursor of π-allylpalladium zwitterionic intermediates, and were applied in Pd-catalyzed diastereo- and enantioselective (4+3) cycloaddition with C,N-cyclic azomethine imines, leading to various biologically important 1,3,4-benzoxadiazepine derivatives in 43-99% yields with 6 : 1 to >20 : 1 dr and up to 95% ee.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Rulei Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Hernandez J, Lawrie AP, Frontier AJ. Alkynyl Halo-Aza-Prins Annulative Couplings. J Org Chem 2023; 88:16065-16075. [PMID: 37971946 PMCID: PMC10696554 DOI: 10.1021/acs.joc.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
This article is a comprehensive report describing our studies in the field of aza-alkynyl Prins chemistry, comparing and contrasting the different reaction partners and reactivities observed during method development. The synthetic strategies combine an alkynyl aza-Prins coupling with an annulation, enabling the preparation of different nitrogen-containing heterocycles. Different iminium ions are explored as viable electrophiles for an alkynyl Prins cyclization, terminated by capture with a halogen nucleophile to form a vinyl halide. The synthetic utility of this functional handle is exploited through a number of Suzuki cross-couplings, allowing for the preparation of a modest library of compounds. In most cases, the Prins couplings are highly selective for the vinyl halides with E geometry, resulting from anti-addition across the alkyne.
Collapse
Affiliation(s)
- Jackson
J. Hernandez
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| | - Alexandra P. Lawrie
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| | - Alison J. Frontier
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| |
Collapse
|
9
|
Tague AJ, Hoang Pham Q, Richardson C, Pyne SG, Hyland CJT. Diastereoselective Pd-catalyzed Decarboxylative (4+2) Cycloaddition Reactions of 4-Vinylbenzoxazinanones and 2-Nitro-1,3-enynes. Chemistry 2023:e202302406. [PMID: 37718289 DOI: 10.1002/chem.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
A formal palladium-catalyzed decarboxylative (4+2) cycloaddition reaction between 4-vinylbenzoxazinanones and 2-nitro-1,3-enynes has been developed to produce highly valuable, densely functionalized tetrahydroquinolines in moderate to excellent yields with high diastereoselectivity under mild reaction conditions. The optimised protocol tolerates a range of substituted 2-nitro-1,3-enynes, which represent an under-utilized class of dipolarophile for transition-metal catalyzed cycloadditions. The employed reaction methodology facilitates efficient cycloaddition with both N-H- and N-Ts-4-vinylbenzoxazinanone dipole precursors. The stereochemistry of the major and minor diastereomeric (4+2) cycloadducts was determined by single crystal X-ray analyses. A mechanistic rationale for the high intrinsic diastereoselectivity and preliminary enantioselective experiments are also presented. The tetrahydroquinoline cycloadduct products feature numerous pendant functionalities, including a vinyl handle, an internal alkyne motif and a nitro functionality (which functions as a latent C-3 nitrogen substituent) for further synthetic manipulations.
Collapse
Affiliation(s)
- Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
10
|
Dong Y, Liu J, Li K, Han S, Liang B, Yang F, Yu S, Wu Y, Zhang C, Guo H. Palladium-Catalyzed Asymmetric (3 + 2) Cycloaddition of 5-Allenyloxazolidine-2,4-Diones with Barbiturate-Derived Alkenes: Synthesis of Spirobarbiturate-γ-Lactams. Org Lett 2023; 25:6328-6333. [PMID: 37610081 DOI: 10.1021/acs.orglett.3c02242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The 5-allenyloxazolidine-2,4-diones had been synthesized as novel precursors of π-allyl palladium zwitterion and were applied in a palladium-catalyzed enantioselective (3 + 2) annulation by using barbiturate-derived alkenes as the reaction partner in the presence of an axially chiral phosphoramidite ligand. This reaction proceeded smoothly under mild reaction conditions, affording highly functionalized spirobarbiturate-γ-lactam derivatives in excellent yields along with high diastereo- and enantioselectivities. The scale-up reaction and further transformation of the product were also successful.
Collapse
Affiliation(s)
- Yujie Dong
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jun Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sheng Han
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bo Liang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cheng Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Tian G, Jin WL, Qin C, Wang J. Convenient synthesis of N-alkyl-3,1-benzoxazin-2-ones from carbamate protected anthranil aldehydes and ketones via one-step alkylation/alkoxy rearrangement. Org Biomol Chem 2023; 21:5757-5761. [PMID: 37404025 DOI: 10.1039/d3ob00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
A practical and step-economical protocol was developed to prepare N-alkyl-3,1-benzoxazin-2-one derivatives from anthranil aldehydes and ketones via one-step alkylation/alkoxy rearrangement, where three new chemical bonds and one ring were constructed in a single step. Control studies revealed a stepwise mechanism and that the alkoxy rearrangement was an intermolecular process.
Collapse
Affiliation(s)
- Guang Tian
- Department of Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, MOE Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemical & Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei-Li Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chuanguang Qin
- Department of Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, MOE Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemical & Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Jie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li K, Zhen S, Wang W, Du J, Yu S, Wu Y, Guo H. Fungicide-inspired precursors of π-allylpalladium intermediates for palladium-catalyzed decarboxylative cycloadditions. Chem Sci 2023; 14:3024-3029. [PMID: 36937593 PMCID: PMC10016346 DOI: 10.1039/d3sc00112a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Inspired by a fungicide, we designed 5-vinyloxazolidine-2,4-diones as new precursors of π-allylpalladium zwitterionic intermediates and developed palladium-catalyzed asymmetric (5 + 3) cycloaddition with azomethine imines and (3 + 2) cycloaddition with 1,1-dicyanoalkenes. Both reactions proceeded smoothly under mild reaction conditions to produce various chiral heterocyclic compounds in high yields with excellent enantioselectivities. These results revealed that 5-vinyloxazolidine-2,4-diones were a type of suitable precursor for palladium catalysis and will find extensive applications in Pd-catalyzed reactions such as cycloaddition and allylic alkylation.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Shuo Zhen
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Wang Wang
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Juan Du
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Hongchao Guo
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| |
Collapse
|
13
|
Li C, Xiang X, Zhang X, He ZL, Gu SX, Dong XQ. Iridium-Catalyzed Intramolecular Asymmetric Allylation of Vinyl Benzoxazinones for the Synthesis of Chiral 4 H-3,1-Benzoxazines via Kinetic Resolution. Org Lett 2023; 25:1172-1177. [PMID: 36779869 DOI: 10.1021/acs.orglett.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Chiral benzoxazinones and 4H-3,1-benzoxazines as important motifs are widely found in abundant pharmaceuticals and biological molecules. We herein successfully developed the first kinetic resolution (KR) process of racemic benzoxazinones through Ir-catalyzed asymmetric intramolecular allylation, furnishing a wide range of chiral benzoxazinones and 4H-3,1-benzoxazines with excellent results via outstanding KR performances (with the s factor up to 170). This protocol exhibited broad substrate scope generality and good functional group tolerance, and the chiral 4H-3,1-benzoxazine products could be readily transformed to other useful optically active heterocycles.
Collapse
Affiliation(s)
- Chenzong Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xun Xiang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xianghe Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao-Lin He
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Shuang-Xi Gu
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
14
|
Chen BH, Liu SJ, Zhao Q, Hou Q, Yuan JL, Zhan G, Yang QQ, Huang W. Palladium-catalyzed asymmetric [4+2] annulation of vinyl benzoxazinanones with pyrazolone 4,5-diones to access spirobenzoxazine frameworks. Chem Commun (Camb) 2023; 59:1233-1236. [PMID: 36632696 DOI: 10.1039/d2cc06621a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, a palladium-catalyzed general synthetic strategy to access an attractive and decorated set of chiral spiro derivatives of benzoxazine compounds is unveiled utilizing vinyl benzoxazinanones reacted with pyrazolone 4,5-diones, which extends the application of vinyl benzoxazinanones with ketones. This asymmetric catalytic [4+2] cycloaddition reaction demonstrates a broad substrate scope with functional group tolerance in yields of up to 76% and up to 96% ee. A facile scale-up and straightforward conversion to diversely substituted products verify the synthetic utility of this method.
Collapse
Affiliation(s)
- Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qiumeng Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Jia-Li Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| |
Collapse
|
15
|
Xiong W, Shi B, Jiang X, Lu L, Xiao W. Ligand-Switched Pd-Catalyzed Divergent Transformations of Vinyl Cyclic Carbamates and Isocyanates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Lin H, Yang X, Ning W, Huang X, Cao X, Ge Y, Mao B, Wang C, Guo H, Yuan C. Palladium-Catalyzed Asymmetric Cascade Intramolecular Cyclization/Intermolecular Michael Addition Reaction of Allenyl Benzoxazinones with 1-Azadienes. Org Lett 2022; 24:9442-9446. [PMID: 36537815 DOI: 10.1021/acs.orglett.2c03842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein designed and synthesized allenyl benzoxazinones of a novel type, which were then involved in a Pd-catalyzed asymmetric cascade intramolecular cyclization/intermolecular Michael addition reaction with 1-azadienes. A broad range of chiral C2-functionalized quinoline derivatives were afforded in moderate to good yields (up to 93%) with high enantioselectivities (up to 93% ee) in this reaction.
Collapse
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xianru Yang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Wenyue Ning
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaofang Huang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Biming Mao
- School of Parmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| |
Collapse
|
17
|
Liao H, Miñoza S, Lee S, Rueping M. Aza‐
Ortho
‐Quinone Methides as Reactive Intermediates: Generation and Utility in Contemporary Asymmetric Synthesis. Chemistry 2022; 28:e202201112. [DOI: 10.1002/chem.202201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hsuan‐Hung Liao
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shinje Miñoza
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
18
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
19
|
Zhang J, Chen Y, Wang Q, Shen J, Liu Y, Deng W. Transition Metal-Catalyzed Asymmetric Cyclizations Involving Allyl or Propargyl Heteroatom-Dipole Precursors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Xiong W, Jiang X, Zhang MM, Xiao WJ, Lu LQ. A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with N-acylpyrazoles. Chem Commun (Camb) 2021; 57:13566-13569. [PMID: 34843613 DOI: 10.1039/d1cc05952a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.
Collapse
Affiliation(s)
- Wei Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
Tian Y, Duan M, Liu J, Fu S, Dong K, Yue H, Hou Y, Zhao Y. Recent Advances in Metal‐Catalyzed Decarboxylative Reactions of Vinyl Benzoxazinanones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ye Tian
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Meibo Duan
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Jialu Liu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Siyu Fu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Kuan Dong
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Hao Yue
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
22
|
Wang K, Wang B, Liu X, Fan H, Liu Y, Li C. Palladium-catalyzed enantioselective linear allylic alkylation of vinyl benzoxazinanones: An inner-sphere mechanism. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yao Z, Feng H, Xi H, Xi C, Liu W. CF 3SO 3H-enabled cascade ring-opening/dearomatization of indole derivatives to polycyclic heterocycles. Org Biomol Chem 2021; 19:4469-4473. [PMID: 33913995 DOI: 10.1039/d1ob00712b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dearomatization process to produce fused polycyclic indolines via a CF3SO3H-mediated cascade ring-opening of a β-lactam and hydroaminative cyclization is demonstrated. It provides a new strategy for the synthesis of important polycyclic indoline-2-amine derivatives in moderate to excellent yields, as well as with good functional group tolerance. Moreover, transformation of the product was performed to deliver the corresponding acid, alcohol and amide smoothly.
Collapse
Affiliation(s)
- Zhengdong Yao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Chuanjun Xi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
24
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
25
|
Fairuz Binte Sheikh Ismail SN, Yang B, Zhao Y. Access to 5,6-Spirocycles Bearing Three Contiguous Stereocenters via Pd-Catalyzed Stereoselective [4 + 2] Cycloaddition of Azadienes. Org Lett 2021; 23:2884-2889. [PMID: 33769066 DOI: 10.1021/acs.orglett.1c00505] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present herein a highly diastereo- and enantioselective Pd-catalyzed [4 + 2] cycloaddition of benzofuran-derived azadienes with vinyl benzoxazinanones, which represents a rare highly stereoselective cycloaddition of this class of fused azadienes as a two-atom synthon. The use of a phosphoramidite ligand bearing a chiral secondary amine with a simple biphenyl backbone proved to be the key to construct the novel spirocyclic tetrahydroquinoline scaffold containing three contiguous stereocenters as a single diastereomer in high enantioselectivity.
Collapse
Affiliation(s)
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
26
|
Guo JM, Fan XZ, Wu HH, Tang Z, Bi XF, Zhang H, Cai LY, Zhao HW, Zhong QD. Asymmetric Synthesis of Spiropyrazolones via Chiral Pd(0)/Ligand Complex-Catalyzed Formal [4+2] Cycloaddition of Vinyl Benzoxazinanones with Alkylidene Pyrazolones. J Org Chem 2021; 86:1712-1720. [PMID: 33378188 DOI: 10.1021/acs.joc.0c02524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the presence of the chiral Pd(0)/ligand complex, vinyl benzoxazinanones underwent the [4+2] cycloaddition with alkylidene pyrazolones smoothly and delivered spiropyrazolones in reasonable yields, diastereoselectivities, and eneantioselectivities (up to >99% yield, >99:1 dr and 99% ee). The absolute configuration of the obtained spiropyrazolones was unambiguously characterized with the use of X-ray single-crystal structure analysis. Moreover, the reaction mechanism was assumed to interpret the formation of the target compounds.
Collapse
Affiliation(s)
- Jia-Ming Guo
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Zu Fan
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hui-Hui Wu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Fan Bi
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Qi-Di Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| |
Collapse
|
27
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
28
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
|
30
|
Catalytic asymmetric dipolar cycloadditions of indolyl delocalized metal-allyl species for the enantioselective synthesis of cyclopenta [b]indoles and pyrrolo[1,2-a]indoles. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Hang Q, Liu S, Yu L, Sun T, Zhang Y, Mei G, Shi F. Design and Application of
Indole‐Based
Allylic Donors for
Pd‐Catalyzed
Decarboxylative Allylation Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qing‐Qing Hang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Si‐Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Ting‐Ting Sun
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Yu‐Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Guang‐Jian Mei
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
32
|
Du J, Hua YD, Jiang YJ, Huang S, Chen D, Ding CH, Hou XL. Palladium-Catalyzed Asymmetric Decarboxylative [4+2] Dipolar Cycloaddition of 4-Vinyl-1,3-dioxan-2-ones with α,β-Disubstituted Nitroalkenes Enabled by a Benzylic Substituted P,N-Ligand. Org Lett 2020; 22:5375-5379. [PMID: 32589436 DOI: 10.1021/acs.orglett.0c01638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Pd-catalyzed asymmetric [4+2] cycloaddition reaction of an aliphatic 1,4-dipole with singly activated electron-deficient alkenes is realized for the first time, enabled by using a newly developed benzylic substituted P,N-ligand, affording tetrahydropyrans having three continuous chiral centers in high yields with high diastereo- and enantioselectivities. The rational transition states of the reaction as well as the role of the benzylic chiral center are proposed.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuan-Da Hua
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yang-Jie Jiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuai Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Di Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Saha M, Das AR. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.:Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| |
Collapse
|
34
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020; 59:8187-8194. [DOI: 10.1002/anie.201915021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|
35
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|
36
|
Uno H, Imai T, Harada K, Shibata N. Synthesis of Highly Functionalized 12-Membered Trifluoromethyl Heterocycles via a Nondecarboxylative Pd-Catalyzed [6 + 6] Annulation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05377] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Takanori Imai
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kyosuke Harada
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
37
|
Sun M, Wu H, Xia X, Chen W, Wang Z, Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J Org Chem 2019; 84:12835-12847. [DOI: 10.1021/acs.joc.9b01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
38
|
Noreen S, Zahoor AF, Ahmad S, Shahzadi I, Irfan A, Faiz S. Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review. CURR ORG CHEM 2019; 23:1168-1213. [DOI: 10.2174/1385272823666190624145039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Background:
Asymmetric catalysis holds a prestigious role in organic syntheses since a long
time and chiral inductors such as ligands have been used to achieve the utmost desired results
at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial
role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed
Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic
potential. The use of chiral ligands as asymmetric inductors has widened the scope of
Tsuji-Trost allylic alkylation reactions.
Conclusion:
Therefore, in this review article, a variety of chiral inductors or ligands have been focused
for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this
regard, recently reported literature (2013-2017) has been described. The use of ligands
causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds
of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.
Collapse
Affiliation(s)
- Samar Noreen
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad-38000, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| |
Collapse
|
39
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019; 58:11013-11017. [DOI: 10.1002/anie.201905993] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
40
|
Suo JJ, Du J, Jiang YJ, Chen D, Ding CH, Hou XL. Diastereo- and enantioselective palladium-catalyzed dearomative [4 + 2] cycloaddition of 3-nitroindoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Zhao H, Ding W, Guo J, Wang L, Song X, Fan X, Tang Z, Wu H, Bi X. Formal [4+2] Cycloaddition of Vinyl Benzoxazinones with Oxazol‐5‐(4
H
)‐Ones for Diastereoselective Construction of 3,4‐Disubstituted Dihydro‐2(1
H
)‐Quinolinones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hong‐Wu Zhao
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Wan‐Qiu Ding
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Jia‐Ming Guo
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Li‐Ru Wang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiu‐Qing Song
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Zu Fan
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Hui‐Hui Wu
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Fan Bi
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
42
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
43
|
Synergetic iridium and amine catalysis enables asymmetric [4+2] cycloadditions of vinyl aminoalcohols with carbonyls. Nat Commun 2019; 10:2716. [PMID: 31221978 PMCID: PMC6586609 DOI: 10.1038/s41467-019-10674-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022] Open
Abstract
Catalytic asymmetric cycloadditions via transition-metal-containing dipolar intermediates are a powerful tool for synthesizing chiral heterocycles. However, within the field of palladium catalysis, compared with the well-developed normal electron-demand cycloadditions with electrophilic dipolarophiles, a general strategy for inverse electron-demand ones with nucleophilic dipolarophiles remains elusive, due to the inherent linear selectivity in the key palladium-catalyzed intermolecular allylations. Herein, based on the switched regioselectivity of iridium-catalyzed allylations, we achieved two asymmetric [4+2] cycloadditions of vinyl aminoalcohols with aldehydes and β,γ-unsaturated ketones through synergetic iridium and amine catalysis. The activation of vinyl aminoalcohols by iridium catalysts and carbonyls by amine catalysts provide a foundation for the subsequent asymmetric [4+2] cycloadditions of the resulting iridium-containing 1,4-dipoles and (di)enamine dipolarophiles. The former provides a straightforward route to a diverse set of enantio-enriched hydroquinolines bearing chiral quaternary stereocenters, and the later represent an enantio- and diastereodivergent synthesis of chiral hydroquinolines. Inverse electron-demand cycloadditions in palladium catalysis are inherently limited by the linear selectivity in the allylic substitution step. To overcome this issue, the authors report a synergetic iridium (branched-selective) and amine catalysis in [4+2] cycloadditions of vinyl aminoalcohols with carbonyls.
Collapse
|
44
|
James J, Jackson M, Guiry PJ. Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801575] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinju James
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Mark Jackson
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
45
|
Pal K, Sontakke GS, Volla CMR. Rh(II)-Catalyzed Highly Diastereoselective Cascade Transannulation of N-Sulfonyl-1,2,3-triazoles and Vinyl Benzoxazinanones. Org Lett 2019; 21:3716-3720. [DOI: 10.1021/acs.orglett.9b01174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
46
|
Punna N, Harada K, Zhou J, Shibata N. Pd-Catalyzed Decarboxylative Cyclization of Trifluoromethyl Vinyl Benzoxazinanones with Sulfur Ylides: Access to Trifluoromethyl Dihydroquinolines. Org Lett 2019; 21:1515-1520. [DOI: 10.1021/acs.orglett.9b00330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kyosuke Harada
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
47
|
Sun M, Wan X, Zhou SJ, Mei GJ, Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem Commun (Camb) 2019; 55:1283-1286. [DOI: 10.1039/c8cc08962k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Under cooperative catalysis of iridium and a Brønsted acid, different C4-substituted azlactones react with vinyl benzoxazinones via a formal [4+2] cycloaddition or substitution reaction in a chemo- and stereoselective mode.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao Wan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Si-Jia Zhou
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
48
|
Yuan WK, Sun SZ, Zhang LB, Wen LR, Li M. A concise construction of 4-alkynylquinazolines via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates under transition-metal-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00668k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise and highly efficient method for the construction of valuable 4-alkynylquinazolines under transition-metal-free conditions was developed via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates in good to excellent yields.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Sheng-Zheng Sun
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
49
|
Hao J, Xu Y, Xu Z, Zhang Z, Yang W. Pd-Catalyzed Three-Component Domino Reaction of Vinyl Benzoxazinanones for Regioselective and Stereoselective Synthesis of Allylic Sulfone-Containing Amino Acid Derivatives. Org Lett 2018; 20:7888-7892. [DOI: 10.1021/acs.orglett.8b03440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiping Hao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yi Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Zhang
- University of Science and Technology Liaoning, Anshan 114051, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
50
|
Ramanathan M, Liu ST. Preparation of Quinazolinoquinazolinones via a Cascade Approach. J Org Chem 2018; 83:14138-14145. [DOI: 10.1021/acs.joc.8b02239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mani Ramanathan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|