1
|
Burcevs A, Jonusauskas G, Novosjolova I, Turks M. Synthesis of Purine-1,4,7,10-Tetraazacyclododecane Conjugate and Its Complexation Modes with Copper(II). Molecules 2025; 30:1612. [PMID: 40286228 PMCID: PMC11990475 DOI: 10.3390/molecules30071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Purine-1,4,7,10-tetraazacyclododecane (cyclen) conjugate was designed to study its Cu2+ ions complexation capability. Several synthetic approaches were tested to achieve the target compound. The optimal approach involved stepwise modifications of purine N9, C8, and C6 positions that, in nine consecutive steps, provided purine-cyclen conjugate. The synthetic sequence involved Mitsunobu-type alkylation at N9 and iodination at C8, followed by Stille, SNAr, CuAAC, and alkylation reactions. The designed purine-cyclen conjugate is able to complex Cu2+ ions in both the cyclen part and between the purine N7 and triazole N2 positions. The complexation pattern and equilibrium were studied using the NMR titration technique in MeCN-d3 and absorption spectra.
Collapse
Affiliation(s)
- Aleksejs Burcevs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d’Aquitaine, Bordeaux University, UMR CNRS 5798, 351 Cours de la Libération, 33405 Talence, France
| | - Irina Novosjolova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| |
Collapse
|
2
|
Burcevs A, Sebris A, Novosjolova I, Mishnev A, Turks M. Synthesis of Indole Derivatives via Aryl Triazole Ring-Opening and Subsequent Cyclization. Molecules 2025; 30:337. [PMID: 39860206 PMCID: PMC11767399 DOI: 10.3390/molecules30020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
A metal-free two-step synthetic approach for obtaining indole derivatives from aryl triazole fragment-containing compounds has been developed. In the first step, the Dimroth equilibrium, followed by nitrogen extrusion, Wolff rearrangement, and amine nucleophile addition, leads to the formation of N-aryl ethene-1,1-diamines. In the second step, the latter intermediates are cyclized into the target 1H-indoles in the presence of iodine. The developed method ensures the synthesis of indoles that possess N-substituents at the indole C2 position. Depending on the applied N-nucleophile, the indolization step provides a selectivity either towards 1H-indoles or 1-aryl-1H-indoles.
Collapse
Affiliation(s)
- Aleksejs Burcevs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Armands Sebris
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Irina Novosjolova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006 Riga, Latvia
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| |
Collapse
|
3
|
Paterson LC, Humphreys PG, Kelly HA, Kerr WJ. Collaborative GSK-University of Strathclyde doctoral research and training programmes: Transforming approaches to industry-academia engagement. Drug Discov Today 2024; 29:104162. [PMID: 39245346 DOI: 10.1016/j.drudis.2024.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
A global biopharma company, GSK, and the University of Strathclyde have developed an expansive and transformative research and training partnership originating in chemistry-aligned disciplines, with subsequent extensive expansion across further areas of the company. This has opened unique approaches for the delivery of collaborative research innovations while also enhancing the professional development and learning of GSK personnel, in addition to other embedded researchers and collaborating scientists, on a pathway towards more rapid and efficient discovery of new medicines.
Collapse
Affiliation(s)
- Laura C Paterson
- University of Strathclyde, Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | | | - Henry A Kelly
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | - William J Kerr
- University of Strathclyde, Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
4
|
Tomota K, Li J, Tanaka H, Nakamoto M, Tsushima T, Yoshida H. Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds. JACS AU 2024; 4:3931-3941. [PMID: 39483222 PMCID: PMC11522924 DOI: 10.1021/jacsau.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
The indispensability of a base in Suzuki-Miyaura coupling (SMC) employing organoboronic acids/esters is well recognized, which occasionally induces competitive protodeborylation in organoboron reagents. This phenomenon is particularly pronounced in fluorine-substituted aryl and heteroaryl boron compounds. Here, we show that direct SMC of naphthalene-1,8-diaminato (dan)-substituted aryl boron compounds, Ar-B(dan), characterized by its remarkable stability toward protodeborylation due to their diminished boron-Lewis acidity, occurs utilizing a weak base in conjunction with a palladium/copper cooperative catalyst system. The approach delineated in this study enables the efficient incorporation of various perfluoroaryl- and heteroaryl-B(dan) reagents, while maintaining high functional group tolerance. Furthermore, the inherent inertness of the B(dan) moiety allowed sequential cross-coupling, where other metallic moieties chemoselectively undergo the reaction, thus leading to the concise, protection-free synthesis of oligoarenes. Our results provide a potent approach to a delicate dilemma between a protodeborylation-resistant property and SMC activity intimately linked to boron-Lewis acidity.
Collapse
Affiliation(s)
- Kazuki Tomota
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jialun Li
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hideya Tanaka
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Data
Science Center, Nara Institute of Science
and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaaki Nakamoto
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takumi Tsushima
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroto Yoshida
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Shi Y, Derasp JS, Guzman SM, Patrick BO, Hein JE. Halide Salts Alleviate TMSOK Inhibition in Suzuki-Miyaura Cross-Couplings. ACS Catal 2024; 14:12671-12680. [PMID: 39169912 PMCID: PMC11334106 DOI: 10.1021/acscatal.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
The Suzuki-Miyaura cross-coupling (SMC) remains one of the most widely used transformations available to chemists. Recently, robust new conditions achieving rapid reactivity under homogeneous aprotic conditions enabled by the use of potassium trimethylsilanolate (TMSOK) as a base were reported. However, the strong inhibitory effect of TMSOK restricts the generality of such conditions. Moreover, the basic nature of TMSOK impedes the use of protic heterocycles as substrates, as these latter anionic species are even more potent catalyst inhibitors. Herein, we report a thorough mechanistic study of these novel SMC conditions. Halide salt additives were found to provide a dramatic rate acceleration and mitigate the inhibitory effect of TMSOK. NMR experiments revealed that this is largely achieved by impacting the unexpected formation of inactive [LnPd(Ar)(μ-OH)]2, favoring the formation of active LnPd(Ar)(X) instead. These findings enabled an impressive substrate scope even at low catalyst loadings (0.1 mol %). Finally, halide additives were observed to enable the use of protic heterocyclic substrates, which could otherwise completely inhibit reactivity.
Collapse
Affiliation(s)
- Yao Shi
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Joshua S. Derasp
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sara M. Guzman
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jason E. Hein
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Acceleration
Consortium, University of Toronto, Toronto, Ontario M5G 3H6, Canada
| |
Collapse
|
6
|
Burcevs A, Sebris A, Traskovskis K, Chu HW, Chang HT, Jovaišaitė J, Juršėnas S, Turks M, Novosjolova I. Synthesis of Fluorescent C-C Bonded Triazole-Purine Conjugates. J Fluoresc 2024; 34:1091-1097. [PMID: 37460821 DOI: 10.1007/s10895-023-03337-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 05/02/2024]
Abstract
A design toward C-C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38-86% and 41-89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.
Collapse
Affiliation(s)
- Aleksejs Burcevs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Armands Sebris
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Kaspars Traskovskis
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia.
| |
Collapse
|
7
|
O6-[(2″,3″-O-Isopropylidene-5″-O-tbutyldimethylsilyl)pentyl]-5′-O-tbutyldiphenylsilyl-2′,3′-O-isopropylideneinosine. MOLBANK 2022. [DOI: 10.3390/m1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a cyclic nucleotide involved in the Ca2+ homeostasis. In its structure, the northern ribose, bonded to adenosine through an N1 glycosidic bond, is connected to the southern ribose through a pyrophosphate bridge. Due to the chemical instability at the N1 glycosidic bond, new bioactive cADPR derivatives have been synthesized. One of the most interesting analogues is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine replaced adenosine. The efforts for synthesizing new linear and cyclic northern ribose modified cIDPR analogues led us to study in detail the inosine N1 alkylation reaction. In the last few years, we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. With the aim to obtain the closest flexible cIDPR analogue, we have attached to the inosine N1 position a 2″,3″-dihydroxypentyl chain, possessing the two OH groups in a ribose-like fashion. The inosine alkylation reaction afforded also the O6-alkylated regioisomer, which could be a useful intermediate for the construction of new kinds of cADPR mimics.
Collapse
|
8
|
Perkins JJ, Shurtleff VW, Johnson AM, El Marrouni A. Synthesis of C6-Substituted Purine Nucleoside Analogues via Late-Stage Photoredox/Nickel Dual Catalytic Cross-Coupling. ACS Med Chem Lett 2021; 12:662-666. [PMID: 33859805 DOI: 10.1021/acsmedchemlett.0c00673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Nucleoside analogues have been and continue to be extremely important compounds in drug discovery. Despite the significant effort dedicated to their synthesis, medicinal chemistry campaigns around these structures are often hampered by synthetic challenges. We describe a strategy for the functionalization of purine nucleosides via photoredox and nickel-catalyzed sp2-sp3 cross-coupling. The conditions described herein allow for coupling of unprotected nucleosides with readily available alkyl bromides, providing opportunities for their application to parallel medicinal chemistry.
Collapse
Affiliation(s)
- James J. Perkins
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Valerie W. Shurtleff
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Alayna M. Johnson
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | | |
Collapse
|
9
|
Lu W, Shen Z. Direct Synthesis of Alkenylboronates from Alkenes and Pinacol Diboron via Copper Catalysis. Org Lett 2018; 21:142-146. [DOI: 10.1021/acs.orglett.8b03599] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenkui Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Yuan S, Yu B, Liu H. Brønsted Acid‐Catalyzed Direct C(
sp
2
)−H Heteroarylation Enabling the Synthesis of Structurally Diverse Biaryl Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
| | - Bin Yu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
- State key Laboratory of Pharmaceutical BiotechnologyNanjing University Nanjing 210023, Jiangsu People's Republic of China
| | - Hong‐Min Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
| |
Collapse
|
11
|
Marzag H, Zerhouni M, Tachallait H, Demange L, Robert G, Bougrin K, Auberger P, Benhida R. Modular synthesis of new C-aryl-nucleosides and their anti-CML activity. Bioorg Med Chem Lett 2018; 28:1931-1936. [PMID: 29655981 DOI: 10.1016/j.bmcl.2018.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The C-aryl-ribosyles are of utmost interest for the development of antiviral and anticancer agents. Even if several synthetic pathways have been disclosed for the preparation of these nucleosides, a direct, few steps and modular approaches are still lacking. In line with our previous efforts, we report herein a one step - eco-friendly β-ribosylation of aryles and heteroaryles through a direct Friedel-Craft ribosylation mediated by bismuth triflate, Bi(OTf)3. The resulting carbohydrates have been functionalized by cross-coupling reactions, leading to a series of new C-aryl-nucleosides (32 compounds). Among them, we observed that 5d exerts promising anti-proliferative effects against two human Chronic Myeloid Leukemia (CML) cell lines, both sensitive (K562-S) or resistant (K562-R) to imatinib, the "gold standard of care" used in this pathology. Moreover, we demonstrated that 5d kills CML cells by a non-conventional mechanism of cell death.
Collapse
Affiliation(s)
- Hamid Marzag
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Marwa Zerhouni
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Hamza Tachallait
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Khalid Bougrin
- Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Mohamed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco.
| |
Collapse
|
12
|
Duarte LFB, Oliveira RL, Rodrigues KC, Voss GT, Godoi B, Schumacher RF, Perin G, Wilhelm EA, Luchese C, Alves D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg Med Chem 2017; 25:6718-6723. [DOI: 10.1016/j.bmc.2017.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
|