1
|
Yan SB, Li Z, Hu XQ, Zhang S, Duan WL. Pd/Chiral Phosphoric Acid-Enabled Asymmetric Intramolecular Double C-H Activation Reaction for the Synthesis of P-Stereogenic Benzophosphole Oxides. Org Lett 2025. [PMID: 39895128 DOI: 10.1021/acs.orglett.4c04853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A Pd-catalyzed intramolecular asymmetric double C-H activation reaction was reported, and a BINOL skeleton-based chiral phosphoric acid (CPA) was identified as a suitable ligand for this transformation. A broad range of P-stereogenic benzophosphole oxides were synthesized in moderate to excellent yield with high levels of enantioselectivity (≤96% ee).
Collapse
Affiliation(s)
- Shao-Bai Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 49 Xilinguole Road, Hohhot 010021, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Xian-Qi Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 49 Xilinguole Road, Hohhot 010021, China
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
2
|
Sarkar S, Bhunya S, Pan S, Datta A, Roy L, Samanta R. Rh(II)-catalysed N2-selective arylation of benzotriazoles and indazoles using quinoid carbenes via 1,5-H shift. Chem Commun (Camb) 2024; 60:4727-4730. [PMID: 38597372 DOI: 10.1039/d4cc00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
An efficient Rh(II)-catalyzed highly selective N2-arylation of benzotriazole, indazole, and 1,2,3 triazole is developed using diazonaphthoquinone. The developed protocol is extended with a wide scope. In addition, late-stage arylation of these scaffolds tethered with bioactive molecules is explored. Control experiments and DFT calculations reveal that the reaction proceeds presumably via nucleophilic addition of the N2 (of the 1H tautomer) center to quinoid-carbene followed by a 1,5-H shift.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Arnadeep Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
3
|
Zhang JQ, Han LB. Beyond Triphenylphosphine: Advances on the Utilization of Triphenylphosphine Oxide. J Org Chem 2024; 89:2090-2103. [PMID: 38271667 DOI: 10.1021/acs.joc.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Triphenylphosphine oxide is a well-known industrial waste byproduct, and thousands of tons of it are generated every year. Due to its chemical stability and limited applications, settlement of this waste issue has drawn extensive attention from chemists. The reduction of triphenylphosphine oxide to triphenylphosphine is heretofore the most employed solution, and is well reviewed. In view of our recent studies on the selective and efficient conversion of Ph3P(O) to other valuable organophosphorus chemicals by using sodium, the present perspective mainly highlights the advances on the utilization of Ph3P(O) to prepare a diverse range of functional organophosphorus compounds, except Ph3P, via selective P-C, C-H, and P-O bond cleavages.
Collapse
Affiliation(s)
- Jian-Qiu Zhang
- Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang Province 312369, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang Province 312369, China
| |
Collapse
|
4
|
Pan S, Kundu S, Samanta R. Rh(II)-Catalyzed Synthesis of N-Aryl 2-pyridone Using 2-Oxypyridine and Diazonaphthoquinone Via 1,6-Benzoyl Migratory Rearrangement. Org Lett 2023; 25:2873-2877. [PMID: 37052408 DOI: 10.1021/acs.orglett.3c00854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Rh(II)-catalyzed simple and efficient synthesis of N-arylated 2-pyridone derivatives is described using 2-oxypyridine and diazonaphthoquinone as coupling partners. The reaction proceeds through the insertion of the nitrogen atom of the 2-oxypyridine derivative into quinoid carbene and subsequent 1,6-benzoyl migratory rearrangement. The reaction is broadened with sufficient scope and has the potential to offer axially chiral N-arylated 2-pyridone derivatives under suitable asymmetric conditions.
Collapse
Affiliation(s)
- Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suparna Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Thakur D, Aggarwal T, Muskan, Sushmita, Verma AK. Unveiling the Three-Component Phosphonylation on Alkynylaldehydes: Toolbox toward Fluorescent Molecules. J Org Chem 2023; 88:2474-2486. [PMID: 36715609 DOI: 10.1021/acs.joc.2c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A regioselective tandem approach for annulated napthyridines/isoquinolines embedded with the phosphine oxide group under mild reaction conditions has been achieved in good to excellent yields. The designed strategy involves the triflate-induced formation of new C sp3-P and C sp2-N bond formation in one pot. This protocol was also well tolerated for the construction of densely functionalized organo-phosphorylated chromenes in good yields. Further, phosphino-derived sulfamethazine and sulfamethoxazole drugs were also successfully synthesized in good yields. The mechanistic studies revealed that the ionic pathway and the formation of regioselective 6-endo dig cyclized products were confirmed through X-ray crystallographic studies. Interestingly, photophysical studies of selectivity selected compounds revealed their stimulating fluorescence properties.
Collapse
Affiliation(s)
- Deepika Thakur
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Trapti Aggarwal
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Muskan
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Sushmita
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi110078, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi110007, India
| |
Collapse
|
6
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
7
|
Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yu C, Xu Y, Zhang X, Fan X. Synthesis of N-Arylindoles from 2-Alkenylanilines and Diazonaphthalen-2(1 H)-ones through Simultaneous Indole Construction and Aryl Introduction. J Org Chem 2022; 87:7392-7404. [PMID: 35594494 DOI: 10.1021/acs.joc.2c00628] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, an efficient synthesis of N-arylindoles through the cascade reaction of 2-alkenylanilines with diazonaphthalen-2(1H)-ones is presented. Mechanistically, this reaction involves the generation of a Ru-carbene complex from diazonaphthalen-2(1H)-one, followed by carbene N-H bond insertion with 2-alkenylaniline, intramolecular cyclization, and oxidative aromatization. In this reaction, the Ru(II) complex acts as a multifunctional catalyst to promote not only the carbene formation but also the intramolecular cyclization and the dehydrogenative aromatization. Meanwhile, air acts as a green and cost-effective oxidant. To our knowledge, this is the first example in which N-arylindoles were synthesized through simultaneous introduction of the N-aryl unit and construction of the indole scaffold. Notable advantages of this method include readily accessible and halide-free substrates, additive-free reaction conditions, good efficiency, excellent atom economy, and compatibility with diverse functional groups. In addition, the utility of the product thus obtained was showcased by its diverse structural transformations.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
9
|
Wang D, Li M, Shuang C, Liang Y, Zhao Y, Wang M, Shi Z. Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides. Nat Commun 2022; 13:2934. [PMID: 35614077 PMCID: PMC9132997 DOI: 10.1038/s41467-022-30697-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
The widespread use of phosphine ligand libraries is frequently hampered by the challenges associated with their modular preparation. Here, we report a protocol that appends arenes to arylphosphines to access a series of biaryl monophosphines via rhodium-catalyzed P(III)-directed ortho C-H activation, enabling unprecedented one-fold, two-fold, and three-fold direct arylation. Our experimental and theoretical findings reveal a mechanism involving oxidative addition of aryl bromides to the Rh catalyst, further ortho C-H metalation via a four-membered cyclometalated ring. Given the ready availability of substrates, our approach opens the door to developing more general methods for the construction of phosphine ligands.
Collapse
Affiliation(s)
- Dingyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chengdong Shuang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
10
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Biswas A, Pan S, Samanta R. Cu(II)-Catalyzed Construction of Heterobiaryls using 1-Diazonaphthoquinones: A General Strategy for the Synthesis of QUINOX and Related P,N Ligands. Org Lett 2022; 24:1631-1636. [DOI: 10.1021/acs.orglett.2c00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Shaaban S, Merten C, Waldmann H. Catalytic Atroposelective C7 Functionalisation of Indolines and Indoles. Chemistry 2022; 28:e202103365. [PMID: 34676929 PMCID: PMC9298066 DOI: 10.1002/chem.202103365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Axially chiral atropisomeric compounds are widely applied in asymmetric catalysis and medicinal chemistry. In particular, axially chiral indole- and indoline-based frameworks have been recognised as important heterobiaryl classes because they are the core units of bioactive natural alkaloids, chiral ligands and bioactive compounds. Among them, the synthesis of C7-substituted indole biaryls and the analogous indoline derivatives is particularly challenging, and methods for their efficient synthesis are in high demand. Transition-metal catalysis is considered one of the most efficient methods to construct atropisomers. Here, we report the enantioselective synthesis of C7-indolino- and C7-indolo biaryl atropisomers by means of C-H functionalisation catalysed by chiral RhJasCp complexes.
Collapse
Affiliation(s)
- Saad Shaaban
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Christian Merten
- Ruhr University BochumDepartment of Organic ChemistryUniversität Straße 15044801BochumGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Straße 1144227DortmundGermany
- Technical University DortmundFaculty of Chemical BiologyOtto-Hahn-Straße 4a44227DortmundGermany
| |
Collapse
|
13
|
Rao J, Ren X, Zhu X, Guo Z, Wang C, Zhou CY. Ruthenium-catalyzed reaction of diazoquinones with arylamines to synthesize diarylamines. Org Chem Front 2022. [DOI: 10.1039/d2qo01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diarylamine scaffold is common in bioactive molecules. Herein, we report a Ru(ii)-catalyzed C–N cross-coupling reaction of diazoquinones with arylamines, which provides access to a range of functionalized diarylamines in 43–97% yields.
Collapse
Affiliation(s)
- Junxin Rao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Ren
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Xin Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
14
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
15
|
Chen X, Cao C, Yang YF, She YB. Computational Insights into Different Regioselectivities in Ir-Porphyrin-Catalyzed C–H Insertion Reaction of Quinoid Carbene. Org Chem Front 2022. [DOI: 10.1039/d1qo01727f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms and regioselectivities of Ir-porphyrin-catalyzed C–H insertion reaction of quinoid carbene (QC) were investigated with density functional theory (DFT) calculations. The competing catalytic cycles were identified as the hydrogen-atom...
Collapse
|
16
|
Rao J, Zhao J, Zhu X, Guo Z, Wang C, Zhou CY. Rhodium-catalyzed reaction of diazoquinones with allylboronates to synthesize allylphenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00626j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed reaction of diazoquinones and allylboronates was developed, which provides access to a range of substituted allylphenols under mild conditions.
Collapse
Affiliation(s)
- Junxin Rao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jianli Zhao
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Xin Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
17
|
Jha N, Singh RP, Saxena P, Kapur M. Iridium(III)-Catalyzed C(3)-H Alkylation of Isoquinolines via Metal Carbene Migratory Insertion. Org Lett 2021; 23:8694-8698. [PMID: 34756040 DOI: 10.1021/acs.orglett.1c03054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An Ir(III)-catalyzed C(3)-H alkylation of N-acetyl-1,2-dihydroisoquinolines with diverse acceptor-acceptor diazo compounds has been achieved under a single catalytic system via metal carbene migratory insertion. Moreover, further synthetic transformations of the alkylated products such as aromatization, selective decarboxylation, and decarbonylation lead to the formation of several synthetically viable isoquinoline derivatives having immense potentials.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Roushan Prakash Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Paridhi Saxena
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
18
|
Manoj N, Jindal G. DFT study on Ir-quinoid catalyzed C-H functionalization: new radical reactivity or direct carbene transfer? Chem Commun (Camb) 2021; 57:11370-11373. [PMID: 34647118 DOI: 10.1039/d1cc04764g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT methods are used to probe the mechanism of a newly developed Ir-quinoid catalyzed C(sp3)-H functionalization of 1,4 dienes. The lowest energy pathway proceeds via an old-school concerted C-H insertion as opposed to a unique hydrogen atom transfer process proposed previously. The concertedness of the reaction shows an intriguing dependence on sterics of the diene leading to either inserted or dehydrogenated products. We use these new insights to tune the axial ligand, and design a more efficient catalyst.
Collapse
Affiliation(s)
- Niket Manoj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India.
| |
Collapse
|
19
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
20
|
Li M, Tao JY, Wang LN, Li JW, Liu YJ, Zeng MH. Construction of Bulky Ligand Libraries by Ru (II)-Catalyzed P (III)-Assisted ortho-C-H Secondary Alkylation. J Org Chem 2021; 86:11915-11925. [PMID: 34423988 DOI: 10.1021/acs.joc.1c01329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of commercially available biaryl monophosphine ligands via ruthenium(II)-catalyzed P(III)-directed-catalyzed ortho C-H secondary alkylation is described. The use of highly ring-strained norbornene as a secondary alkylating reagent is the key to this transformation. A series of highly bulky ligands with a norbornyl group were obtained in excellent yields. The modified ligands with secondary alkyl group outperformed common substituted phosphines in the Suzuki-Miyaura cross-coupling reaction at a ppm mole level of Pd catalyst.
Collapse
Affiliation(s)
- Ming Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jun-Yang Tao
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Liang-Neng Wang
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia-Wei Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue-Jin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ming-Hua Zeng
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Department of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
21
|
Bera S, Roy S, Pal SC, Anoop A, Samanta R. Iridium(III)-Catalyzed Intermolecular Mild N-Arylation of Aliphatic Amides Using Quinoid Carbene: A Migratory Insertion-Based Approach. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Yang SD, Lou QX, Li JY. Iridium(III)-Catalyzed C−H Functionalization of Triarylphosphine Oxides with Diazo Dicarbonyl Compounds: Synthesis of α-Aryl 1,3-Dicarbonyl Derivatives. Synlett 2021. [DOI: 10.1055/a-1409-1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA novel (pentamethylcyclopenta-1,3-dienyl)iridium(III)-catalyzed direct C–H functionalization of triarylphosphine oxides with diazo dicarbonyl compounds through carbene insertion has been developed. This strategy provides a simple and efficient route to the construction of α-arylated 1,3-dicarbonyl compounds, which are important building blocks in pharmaceutical chemistry.
Collapse
|
23
|
Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Huang Y, Hu Y, Han Y, Ou Y, Huo Y, Li X, Chen Q. Direct Synthesis of ortho-Halogenated Arylphosphonates via a Three-Component Reaction Involving Arynes. J Org Chem 2021; 86:7010-7018. [PMID: 33881847 DOI: 10.1021/acs.joc.1c00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A three-component reaction involving arynes, trialkyl phosphites, and halides has been achieved under mild reaction conditions. This transformation provides a direct synthetic approach to ortho-halogenated arylphosphonates, which could be rapidly converted to diversely ortho-functionalized arylphosphorus compounds.
Collapse
Affiliation(s)
- Yuanting Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yifan Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yukun Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingcong Ou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Zhou ZX, Li JW, Wang LN, Li M, Liu YJ, Zeng MH. Cooperative Ligand-Promoted P (III)-Directed Ruthenium-Catalyzed Remote Meta-C-H Alkylation of Tertiary Phosphines. Org Lett 2021; 23:2057-2062. [PMID: 33630602 DOI: 10.1021/acs.orglett.1c00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we disclose a ruthenium-catalyzed meta-selective C-H activation of phosphines by using intrinsic P(III) as a directing group. 2,2,6,6-Tetramethylheptane-3,5-dione acts as the ligand and exhibits an excellent performance in boosting the meta-alkylation. The protocol allows an efficient and straightforward synthesis of meta-alkylated tertiary phosphines. Several meta-alkylated phosphines were evaluated for Pd-catalyzed Suzuki coupling and found to be superior to commercially available ortho-substituted phosphines. The practicability of this methodology is further demonstrated by the synthesis of difunctionalized phosphines.
Collapse
Affiliation(s)
- Zheng-Xin Zhou
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Jia-Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Liang-Neng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| |
Collapse
|
26
|
Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Co(III), Rh(III) & Ir(III)‐Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem Asian J 2021; 16:443-459. [DOI: 10.1002/asia.202001219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srilakshmi Talakola
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
27
|
Guan R, Zhao H, Cao L, Jiang H, Zhang M. Ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d0qo01284j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By an in situ coupling-interrupted transfer hydrogenation strategy, a direct construction of novel α-phosphinoyl 1,2,3,4-tetrahydronaphthyridines via ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides is demonstrated.
Collapse
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
28
|
Bera S, Sarkar S, Samanta R. Recent quinone diazide based transformations via metal–carbene formation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01678d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advancements in versatile synthetic transformations using quinone diazide based metal carbenes have been summarized.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Souradip Sarkar
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Rajarshi Samanta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
29
|
Sikari R, Chakraborty G, Guin AK, Paul ND. Nickel-Catalyzed [4 + 2] Annulation of Nitriles and Benzylamines by C-H/N-H Activation. J Org Chem 2021; 86:279-290. [PMID: 33314935 DOI: 10.1021/acs.joc.0c02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.
Collapse
Affiliation(s)
- Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
30
|
Zhou J, Yin C, Zhong T, Zheng X, Yi X, Chen J, Yu C. A direct synthesis method towards spirocyclic indazole derivatives via Rh( iii)-catalyzed C–H activation and spiroannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00805f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(iii)-catalyzed [4 + 1] spiroannulation of N-aryl phthalazine-diones (pyridazine-diones) with diazo compounds to construct spirocyclic indazole derivatives with diverse structures is described.
Collapse
Affiliation(s)
- Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| |
Collapse
|
31
|
Wang M, Zhang L, Chen X, Zhang X, Fan X. An unusual reaction mode of 1-phenylpyrazolidinones toward diazonaphthalen-2(1H)-ones featuring cascade C(sp2)–H and C(sp3)–H bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00305d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a novel synthesis of pyrazolidinone fused 1,3-benzooxazepine derivatives via a formal [4 + 3] annulation reaction of 1-phenylpyrazolidinones with diazonaphthalen-2(1H)-ones is presented.
Collapse
Affiliation(s)
- Muhua Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Linghua Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Xi Chen
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| |
Collapse
|
32
|
Niu Y, Qi Z, Lou Q, Bai P, Yang S. Copper-catalyzed arylation of polycyclic aromatic hydrocarbons by the P[double bond, length as m-dash]O group. Chem Commun (Camb) 2020; 56:14721-14724. [PMID: 33174877 DOI: 10.1039/d0cc06639g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a directed and regioselective arylation of polycyclic aromatic hydrocarbons (PAHs) by using a P[double bond, length as m-dash]O directing group is reported herein. The protocol uses a cheap copper catalyst, and results in a breakthrough meta-selective C-H functionalization of arylphosphine oxide compounds. Substrates with potential fluorescence properties, for example, pyrene and fluoranthene, were successfully arylated under the system, thus achieving an efficient modification of fluorescent molecules containing the P[double bond, length as m-dash]O functional group.
Collapse
Affiliation(s)
- Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Shaaban S, Li H, Otte F, Strohmann C, Antonchick AP, Waldmann H. Enantioselective Synthesis of Five-Membered-Ring Atropisomers with a Chiral Rh(III) Complex. Org Lett 2020; 22:9199-9202. [PMID: 33186042 PMCID: PMC7735750 DOI: 10.1021/acs.orglett.0c03355] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 11/28/2022]
Abstract
Axially chiral atropisomeric compounds are widely applied in asymmetric catalysis and medicinal chemistry, and efficient methods for their synthesis are in high demand. This applies in particular to atropisomers derived from five-membered aromatic rings because their lower barrier for rotation among the biaryl axis limits their asymmetric synthesis. We report here an enantioselective C-H functionalization method using our chiral RhJasCp complex for the synthesis of the biaryl atropisomer types that can be accessed from three different five-membered-ring heterocycles.
Collapse
Affiliation(s)
- Saad Shaaban
- Max-Planck-Institute
of Molecular Physiology, Department of Chemical
Biology, Otto-Hahn-Straße
11, 44227 Dortmund, Germany
| | - Houhua Li
- Max-Planck-Institute
of Molecular Physiology, Department of Chemical
Biology, Otto-Hahn-Straße
11, 44227 Dortmund, Germany
| | - Felix Otte
- Technical
University Dortmund, Department of Inorganic
Chemistry, Otto-Hahn-Straße
6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Technical
University Dortmund, Department of Inorganic
Chemistry, Otto-Hahn-Straße
6, 44227 Dortmund, Germany
| | - Andrey P. Antonchick
- Max-Planck-Institute
of Molecular Physiology, Department of Chemical
Biology, Otto-Hahn-Straße
11, 44227 Dortmund, Germany
- Technical
University Dortmund, Faculty of Chemical
Biology, Otto-Hahn-Straße
4a, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute
of Molecular Physiology, Department of Chemical
Biology, Otto-Hahn-Straße
11, 44227 Dortmund, Germany
- Technical
University Dortmund, Faculty of Chemical
Biology, Otto-Hahn-Straße
4a, 44227 Dortmund, Germany
| |
Collapse
|
34
|
Li G, An J, Jia C, Yan B, Zhong L, Wang J, Yang S. m-CAr–H Bond Alkylations and Difluoromethylation of Tertiary Phosphines Using a Ruthenium Catalyst. Org Lett 2020; 22:9450-9455. [DOI: 10.1021/acs.orglett.0c03377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| | - Jiangzhen An
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| | - Chunqi Jia
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Bingxu Yan
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| | - Lei Zhong
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| | - Junjie Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, P. R. China
| |
Collapse
|
35
|
Lou QX, Niu Y, Qi ZC, Yang SD. Ir(III)-Catalyzed C-H Functionalization of Triphenylphosphine Oxide toward 3-Aryl Oxindoles. J Org Chem 2020; 85:14527-14536. [PMID: 32921040 DOI: 10.1021/acs.joc.0c00999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With triphenylphosphine oxide serving as both the directing group and the reagent, we have developed a Cp*Ir(III)-catalyzed direct C-H functionalization of triphenylphosphine oxide with 3-diazooxindoles to afford a range of 3-(2-(diphenylphosphoryl)phenyl)indolin-2-one derivatives in moderate to excellent yields. The title products are potentially important building blocks for organic synthesis through various chemical transformations. This protocol is simple and efficient and offers high atom economy with only N2 as the byproduct.
Collapse
Affiliation(s)
- Qin-Xin Lou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
36
|
Yan S, Rao J, Zhou CY. Chemoselective Rearrangement Reactions of Sulfur Ylide Derived from Diazoquinones and Allyl/Propargyl Sulfides. Org Lett 2020; 22:9091-9096. [PMID: 33147039 DOI: 10.1021/acs.orglett.0c03493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here, we describe three types of rearrangement reactions of sulfur ylide derived from diazoquinones and allyl/propargyl sulfides. With Rh2(esp)2 as the catalyst, diazoquinones react with allyl/propargyl sulfides to form a sulfur ylide, which undergoes a chemoselective tautomerization/[2,3]-sigmatropic rearrangement reaction, a Doyle-Kirmse rearrangement/Cope rearrangement cascade reaction, or a Doyle-Kirmse rearrangement/elimination reaction, depending on the substituent of the sulfides. The protocol provides alkenyl and allenyl sulfides and multisubstituted phenols with moderate and high yields.
Collapse
Affiliation(s)
- Sijia Yan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junxin Rao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Transition‐Metal‐Free C(sp
2
)–C(sp
2
) Cross‐Coupling of Diazo Quinones with Catechol Boronic Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Wu K, Wu LL, Zhou CY, Che CM. Transition-Metal-Free C(sp 2 )-C(sp 2 ) Cross-Coupling of Diazo Quinones with Catechol Boronic Esters. Angew Chem Int Ed Engl 2020; 59:16202-16208. [PMID: 32558142 DOI: 10.1002/anie.202006542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/11/2022]
Abstract
A transition-metal-free C(sp2 )-C(sp2 ) bond formation reaction by the cross-coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi-substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2-rearrangement through a stepwise mechanism.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China.,Present address: College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
39
|
Yuan S, Chang J, Yu B. Construction of Biologically Important Biaryl Scaffolds through Direct C–H Bond Activation: Advances and Prospects. Top Curr Chem (Cham) 2020; 378:23. [DOI: 10.1007/s41061-020-0285-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
40
|
Li JW, Wang LN, Li M, Tang PT, Zhang NJ, Li T, Luo XP, Kurmoo M, Liu YJ, Zeng MH. Late-Stage Modification of Tertiary Phosphines via Ruthenium(II)-Catalyzed C–H Alkylation. Org Lett 2020; 22:1331-1335. [DOI: 10.1021/acs.orglett.9b04590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jia-Wei Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Liang-Neng Wang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Pan-Ting Tang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ni-Juan Zhang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tian Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Xiao-Peng Luo
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
41
|
Wang H, Richard Y, Wan Q, Zhou C, Che C. Iridium(III)‐Catalyzed Intermolecular C(sp
3
)−H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angew Chem Int Ed Engl 2020; 59:1845-1850. [DOI: 10.1002/anie.201911138] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yann Richard
- Faculté des SciencesUniversité catholique de Louvain Place des Sciences 2 1348 Louvain-la-Neuve Belgium
| | - Qingyun Wan
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- College of Chemistry and Materials ScienceJinan University Guangzhou China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
42
|
Li X, Wang J, Xie X, Dai W, Han X, Chen K, Liu H. Ir(iii)-Catalyzed direct C–H functionalization of N-phenylacetamide with α-diazo quinones: a novel strategy for producing 2-hydroxy-2′-amino-1,2′-biaryl scaffolds. Chem Commun (Camb) 2020; 56:3441-3444. [DOI: 10.1039/c9cc08297b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel strategy is reported for the construction of 2-hydroxy-2′-amino-1,1′-biaryl scaffolds via Ir(iii)-catalyzed direct C–H bond activation under mild reaction conditions.
Collapse
Affiliation(s)
- Xingjun Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Jiang Wang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiong Xie
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Wenhao Dai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Xu Han
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Kaixian Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| |
Collapse
|
43
|
Wang H, Richard Y, Wan Q, Zhou C, Che C. Iridium(III)‐Catalyzed Intermolecular C(sp
3
)−H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yann Richard
- Faculté des SciencesUniversité catholique de Louvain Place des Sciences 2 1348 Louvain-la-Neuve Belgium
| | - Qingyun Wan
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- College of Chemistry and Materials ScienceJinan University Guangzhou China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
44
|
Wang L, Zhao J, Sun Y, Zhang HY, Zhang Y. A Catalyst-Free Minisci-Type Reaction: the C-H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901266] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liping Wang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuting Sun
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| |
Collapse
|
45
|
Diesel J, Cramer N. Generation of Heteroatom Stereocenters by Enantioselective C–H Functionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03194] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Johannes Diesel
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSA, BCH 4305, CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSA, BCH 4305, CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Wang HX, Wan Q, Wu K, Low KH, Yang C, Zhou CY, Huang JS, Che CM. Ruthenium(II) Porphyrin Quinoid Carbene Complexes: Synthesis, Crystal Structure, and Reactivity toward Carbene Transfer and Hydrogen Atom Transfer Reactions. J Am Chem Soc 2019; 141:9027-9046. [DOI: 10.1021/jacs.9b03357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kai Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
47
|
Xie H, Shao Y, Gui J, Lan J, Liu Z, Ke Z, Deng Y, Jiang H, Zeng W. Co(II)-Catalyzed Regioselective Pyridine C-H Coupling with Diazoacetates. Org Lett 2019; 21:3427-3430. [PMID: 30998018 DOI: 10.1021/acs.orglett.9b01196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A Co(II)-catalyzed pyridyl C-H bond carbenoid insertion with α-diazoacetates has been realized. This transformation features a highly regioselective C-C bond formation at the C3-position of pyridines, providing an efficient access to diverse α-aryl-α-pyridylacetates.
Collapse
Affiliation(s)
- Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Youxiang Shao
- School of Materials Science & Engineering, PCFM Lab , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jiao Gui
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Jianyong Lan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yuanfu Deng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , China
| |
Collapse
|
48
|
Zhou CN, Zheng ZA, Chang G, Xiao YC, Shen YH, Li G, Zhang YM, Peng WM, Wang L, Xiao B. Phosphorus-Containing Groups Assisted Transition Metal Catalyzed C-H Activation Reactions. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190213113059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, transition metal-catalyzed direct C-H activation with
the assistance of a coordinating directing group has emerged as an atom- and stepeconomical
synthetic tools to transform C–H bonds into carbon-carbon or carbonheteroatom
bonds. Although the strategies involving regioselective C–H cleavage assisted
by various directing groups have been extensively reviewed in the literature, we now attempt
to give an overview of the recent advances on phosphorus-containing functional
group assisted C-H activation reactions catalyzed by transition-metal catalysts including
mechanistic study and synthetic applications. The discussion is directed towards C-H olefination,
C-H activation/cyclization, C-H arylation, C-H amination, C-H hydroxylation
and acetoxylation as well as miscellaneous C-H activation.
Collapse
Affiliation(s)
- Chun-Ni Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Zi-Ang Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - George Chang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, N2L 3G1, Canada
| | - Yuan-Chao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Yang-Huan Shen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Gen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Yu-Min Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Wang-Ming Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Liang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, 8 Sanjiaohu Road, Wuhan 430056, China
| |
Collapse
|
49
|
Li JW, Wang LN, Li M, Tang PT, Luo XP, Kurmoo M, Liu YJ, Zeng MH. Ruthenium-Catalyzed Gram-Scale Preferential C-H Arylation of Tertiary Phosphine. Org Lett 2019; 21:2885-2889. [PMID: 30957500 DOI: 10.1021/acs.orglett.9b00888] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general protocol for site-preferential mono-C-H arylation of tertiary phosphine ligands catalyzed by a ruthenium(II) complex was devised. This protocol gives access to a series of modified Buchwald-biaryl monophosphines on a gram scale in moderate to excellent yields. A catalytic cycle is proposed derived from knowledge of the intermediates observed by ESI-MS. Importantly, these monoarylated products could be further transformed into dibenzophosphole derivatives.
Collapse
Affiliation(s)
- Jia-Wei Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Liang-Neng Wang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Pan-Ting Tang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Xiao-Peng Luo
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177 , Université de Strasbourg , 4 rue Blaise Pascal , Strasbourg 67070 , France
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China.,Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , China
| |
Collapse
|
50
|
Takahashi S, Shimooka H, Okauchi T, Kitamura M. Pd-catalyzed Cyclization of Terminal Alkynes using Diazonaphthoquinones: Synthesis of Naphtho[1,2- b]furans. CHEM LETT 2019. [DOI: 10.1246/cl.180803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhei Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Hirokazu Shimooka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|