1
|
Li YH, Hu XP. Copper-Catalyzed Enantioselective (3 + 3) Cycloaddition of Ethynyl Methylene Cyclic Carbamates with N, N'-Cyclic Azomethine Imines. Org Lett 2025; 27:4372-4377. [PMID: 40238994 DOI: 10.1021/acs.orglett.5c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A copper-catalyzed asymmetric cross 1,3-dipolar cycloaddition between 2-aminoallyl zwitterions generated in situ from ethynyl methylene cyclic carbamates and N,N'-cyclic azomethine imines has been realized. The reaction, which utilizes a commercially available chiral tridentate N-ligand, delivers a range of functionally rich chiral hexahydro-8H-pyrazolo[1,2-a][1,2,4]triazin-8-one derivatives in 51-99% yields with good to high enantioselectivities (44-95% ee).
Collapse
Affiliation(s)
- Ya-Hui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Grau BW, Kumar P, Nilsen A, Malhotra SV. Nitrogen-bridgehead compounds: overview, synthesis, and outlook on applications. Org Biomol Chem 2025; 23:1479-1532. [PMID: 39623962 DOI: 10.1039/d4ob01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The nitrogen-bridgehead is a common structural motif present in a multitude of natural products. As many of these abundant compounds exhibit biological activities, e.g. against cancer or bacteria, these derivatives are of high interest. While natural products are often associated with problematic characteristics, such as elaborate separation processes, high molecular complexity and limited room for derivatization, purely synthetic approaches can overcome these challenges. Many synthetic procedures have been reported for preparation of artificial nitrogen bridgehead compounds, however, to our surprise only a fraction of these has been tested for their bioactivity. This review is therefore meant to give an overview of existing synthetic methods that provide scaffolds containing bridgehead nitrogen atoms, covering the period from 2000 to 2023. Reviews which cover subunits of this topic are referenced as well.
Collapse
Affiliation(s)
- Benedikt W Grau
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Nilsen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Wang S, Peng S, Zhao H, Liang Z, Lu X, Du Q, Wang Y, Wei B, Huang Q, Tan H. Regioselectivity Switch of α-Amino Acid-Derived Esters and MBH Carbonates for the Synthesis of Allyl-Substituted Azlactones. J Org Chem 2024; 89:3800-3808. [PMID: 38417106 DOI: 10.1021/acs.joc.3c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Allylic azlactones are greatly significant in terms of potential bioactivities and synthetic applications. Owing to the burgeoning interest of the pharmaceutical industry in α-amino acid derivatives, discovering strategies for the synthesis of allylic azlactones is important. Herein, we establish a transition-metal-free regioselectivity switch of α-amino acid-derived esters and MBH carbonates, which exhibits broad reaction scope and good reaction yields. Control reactions indicate that both base and solvent are important for regioselectivity.
Collapse
Affiliation(s)
- Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Shijie Peng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Huishan Zhao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Zhuobao Liang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qing Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Yifan Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Bingzhen Wei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
5
|
Mondal M, Mitra S, Twardy DJ, Panda M, Wheeler KA, Kerrigan NJ. Asymmetric Synthesis of Bicyclic Pyrazolidinones through Alkaloid-Catalyzed [3+2]-Cycloadditions of Ketenes and Azomethine Imines. Chemistry 2022; 28:e202104391. [PMID: 35175649 PMCID: PMC9311188 DOI: 10.1002/chem.202104391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/29/2022]
Abstract
A versatile asymmetric synthesis of bicyclic pyrazolidinones through alkaloid-catalyzed formal [3+2]- and [3+2+2]-cycloadditions of ketenes with azomethine imines is described. The methodology was found to be tolerant of ketene and a variety of monosubstituted ketenes (R=alkyl, OAc). The products were formed in good to excellent yields (71-99 % for 24 examples, 39 examples in all), with good to excellent diastereoselectivity in many cases (dr 3 : 1 to 27 : 1 for 22 examples), and with excellent enantioselectivity for most examples (≥93 % ee for 34 products). In the case of most disubstituted ketenes, the reaction proceeded through a [3+2+2]-cycloaddition to form structurally interesting bicyclic pyrazolo-oxadiazepinediones with moderate diastereoselectivity (dr up to 3.7 : 1) and as racemic mixtures (3 examples). The method represents the first unambiguous example of an enantioselective reaction between ketenes and a 1,3-dipole.
Collapse
Affiliation(s)
- Mukulesh Mondal
- Department of ChemistryOakland University2200 N. Squirrel RoadRochesterMI 48309-4477USA
| | - Shubhanjan Mitra
- School of Chemical SciencesDublin City University GlasnevinDublin 9Ireland
| | - Dylan J. Twardy
- Department of ChemistryOakland University2200 N. Squirrel RoadRochesterMI 48309-4477USA
| | - Manashi Panda
- Department of ChemistryOakland University2200 N. Squirrel RoadRochesterMI 48309-4477USA
| | | | - Nessan J. Kerrigan
- School of Chemical SciencesDublin City University GlasnevinDublin 9Ireland
| |
Collapse
|
6
|
Yang Z, Zhou Y, Li H, Lei J, Bing P, He B, Li Y. A Facile Route to Pyrazolo[1,2‐a]cinnoline via Rhodium(III)‐catalyzed Annulation of Pyrazolidinoes and Iodonium Ylides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zi Yang
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yi Zhou
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Haigang Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations Changsha Medical University Changsha 410219 P. R. China
| | - Jieni Lei
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Pingping Bing
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Binsheng He
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yaqian Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| |
Collapse
|
7
|
Li Z, Kumagai N, Shibasaki M. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of α,β-Unsaturated Amide and Azomethine Imine. Chem Pharm Bull (Tokyo) 2021; 68:552-554. [PMID: 32475860 DOI: 10.1248/cpb.c20-00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α,β-Unsaturated amides were incorporated as viable dipolarophiles in a catalytic asymmetric 1,3-dipolar cycloaddition of azomethine imines. The use of a 7-azaindoline auxiliary was essential to acquire sufficient reactivity with excellent diastereoselectivity, likely due to the chelating activation of the amide by the In(III)/bishydroxamic acid complex. Although the enantioselectivity remains unsatisfactory, this work is an important step toward the development of an asymmetric catalysis utilizing stable and low-reactive substrates.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Microbial Chemistry
| | | | | |
Collapse
|
8
|
Deepthi A, Thomas NV, Sruthi SL. An overview of the reactions involving azomethine imines over half a decade. NEW J CHEM 2021. [DOI: 10.1039/d1nj01090e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Azomethine imines constitute a versatile class of 1,3-dipoles which was used extensively for biologically relevant N-heterocycle synthesis – a five-year recap.
Collapse
Affiliation(s)
- Ani Deepthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - Noble V. Thomas
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - S. L. Sruthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| |
Collapse
|
9
|
Xie L, Li Y, Dong S, Feng X, Liu X. Catalytic asymmetric formal [3+2] cycloaddition of isatogens with azlactones to construct indolin-3-one derivatives. Chem Commun (Camb) 2021; 57:239-242. [DOI: 10.1039/d0cc06418a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of enantioenriched indolin-3-one derivatives were readily obtained by chiral guanidine-catalyzed [3+2] cycloaddition of isatogens with azlactones.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yi Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
10
|
González Adelantado FV. Phase-transfer catalysis and the ion pair concept. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis review outlines the recent advances in the field of asymmetric phase-transfer catalysis and the ion-pair concept including alkylation of amino acids and peptides, oxyindoles and other substrates, conjugate additions, fluorinations, photo-induced phase-transfer catalysis, Nitro-Mannich reactions, heterocyclizations and cycloadditions for the preparation of heterocycles, derivatization of isoxazoles, umpolung conjugate addition of imines and other three asymmetric reactions.
Collapse
|
11
|
Ni Q, Wang X, Xu F, Chen X, Song X. Organocatalytic asymmetric [4+2] cyclization of 2-benzothiazolimines with azlactones: access to chiral benzothiazolopyrimidine derivatives. Chem Commun (Camb) 2020; 56:3155-3158. [DOI: 10.1039/d0cc00736f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A squaramide catalyzed regiospecific and stereoselective [4+2] cyclization of 2-benzothiazolimines with azlactones has been established.
Collapse
Affiliation(s)
- Qijian Ni
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xuyang Wang
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Fangfang Xu
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Xiaoxiao Song
- College of Chemistry and Materials Science
- Key Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| |
Collapse
|
12
|
Chou H, Leow D, Tan C. Recent Advances in Chiral Guanidine‐Catalyzed Enantioselective Reactions. Chem Asian J 2019; 14:3803-3822. [DOI: 10.1002/asia.201901183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hsiao‐Chieh Chou
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Dasheng Leow
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
13
|
Sun BB, Hu QX, Hu JM, Yu JQ, Jia J, Wang XW. Asymmetric [4+2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Volpe C, Meninno S, Capobianco A, Vigliotta G, Lattanzi A. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) Triggered Diastereoselective [3+2] Cycloaddition of Azomethine Imines and Pyrazoleamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Giovanni Vigliotta
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| |
Collapse
|
15
|
Wang Y, Chen Y, Li X, Mao Y, Chen W, Zhan R, Huang H. Enantioselective synthesis of pyrano[2,3-c]pyrrole via an organocatalytic [4 + 2] cyclization reaction of dioxopyrrolidines and azlactones. Org Biomol Chem 2019; 17:3945-3950. [DOI: 10.1039/c9ob00419j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present work provides a simple and efficient access to chiral pyrano[2,3-c]pyrrole via an asymmetric [4 + 2] cyclization reaction catalyzed by a cinchona-squaramide catalyst.
Collapse
Affiliation(s)
- Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Xiaoping Li
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yukang Mao
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| |
Collapse
|
16
|
Yang Z, Song Z, Jie L, Wang L, Cui X. Iridium(iii)-catalysed annulation of pyrazolidinones with propiolates: a facile route to pyrazolo[1,2-a] indazoles. Chem Commun (Camb) 2019; 55:6094-6097. [DOI: 10.1039/c9cc02232e] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium(iii)-catalysed C–H bond activation/subsequent [4+1] cyclization for the synthesis of pyrazolo[1,2-a] indazoles has been developed.
Collapse
Affiliation(s)
- Zi Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Zhenyu Song
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Lianghua Jie
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Lianhui Wang
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| |
Collapse
|
17
|
Xie L, Dong S, Zhang Q, Feng X, Liu X. Asymmetric construction of dihydrobenzofuran-2,5-dione derivatives via desymmetrization of p-quinols with azlactones. Chem Commun (Camb) 2019; 55:87-90. [DOI: 10.1039/c8cc08985j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Amino-benzofuran-2,5-diones containing a chiral amino acid residue were achieved through BG-1·HBPh4 catalyzed enantioselective Michael addition/lactonization cascade reaction of p-quinols with azlactones.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Qian Zhang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
18
|
Kou YD, Zhao ZN, Yang X, Kalita SJ, Chen XJ, Xie ZZ, Zhao Y, Huang YY. Stereospecific Synthesis of Fluorinated Pyrazolidinones and Isoxazolidines via a Catalyst-Free 1,3-Dipolar Cycloaddition of β-Fluoroalkylated α,β-Unsaturated 2-Pyridylsulfones. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying-Da Kou
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Zhen-Ni Zhao
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Xing Yang
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Subarna Jyoti Kalita
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Xue-Jian Chen
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Zhi-Zhong Xie
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures; International School of Materials Science and Engineering; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Yi-Yong Huang
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| |
Collapse
|
19
|
Cao W, Liu X, Feng X. Chiral organobases: Properties and applications in asymmetric catalysis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Gong J, Wan Q, Kang Q. Asymmetric [3 + 2] Cycloaddition Employing N,N′-Cyclic Azomethine Imines Catalyzed by Chiral-at-Metal Rhodium Complex. Org Lett 2018; 20:3354-3357. [PMID: 29763332 DOI: 10.1021/acs.orglett.8b01264] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun Gong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
21
|
Li P, Xu X, Chen J, Yao H, Lin A. Rh(iii)-Catalyzed synthesis of pyrazolo[1,2-a]cinnolines from pyrazolidinones and diazo compounds. Org Chem Front 2018. [DOI: 10.1039/c8qo00209f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrazolo[1,2-a]cinnolines were achieved via a rhodium(iii)-catalyzed redox-neutral annulation procedure, exhibiting good regioselectivity and high functional group tolerability.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xiaoying Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jiayi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
22
|
Yang L, Lv Y, Wang F, Zhong G. Chiral NHC-catalyzed 1,3-dipolar [3 + 2] cycloaddition of azomethine imines with α-chloroaldehydes for the synthesis of bicyclic pyrazolidinones. Org Biomol Chem 2018; 16:4433-4438. [DOI: 10.1039/c8ob00925b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An NHC-catalyzed [3 + 2] cycloaddition reaction of azomethine imines and α-chloroaldehydes was developed for the synthesis of chiral bicyclic pyrazolidinone derivatives.
Collapse
Affiliation(s)
- Limin Yang
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Yunbo Lv
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Fei Wang
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Guofu Zhong
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
23
|
Dong S, Feng X, Liu X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem Soc Rev 2018; 47:8525-8540. [DOI: 10.1039/c7cs00792b] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article reviews current achievements of chiral guanidines and their derivatives in organocatalysis, and updates versatile guanidine–metal salt combinations in asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|