1
|
Wang Z, Huang S, Hou H, Liu W, Ou W. Direct hydroacylation of arylacrylonitriles toward β-ketonitriles assisted by an EDA complex. Chem Commun (Camb) 2025; 61:7510-7513. [PMID: 40298254 DOI: 10.1039/d5cc00867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Here, we present a base-mediated direct hydroacylation reaction of arylacrylonitrile. This method provides an efficient approach for highly site-selective synthesis of β-ketonitriles, demonstrating mild, facile and high atom- and step-economical characteristics. The reaction occurs through a free-radical pathway enabled by an EDA complex in the absence of light.
Collapse
Affiliation(s)
- Zhenhui Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P. R. China.
| | - Shiqing Huang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Wei Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P. R. China.
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
2
|
Yadav MS, Pandey VK, Jaiswal MK, Singh SK, Sharma A, Singh M, Tiwari VK. Late-Stage Functionalization Strategies of 1,2,3-Triazoles: A Post-Click Approach in Organic Synthesis. J Org Chem 2025; 90:5731-5762. [PMID: 40251004 DOI: 10.1021/acs.joc.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The 1,2,3-triazole scaffolds are an important class of biologically privileged heterocyclic compounds with several key applications in chemistry, biology, medicine, agriculture, and material science. The "postclick" functionalization of 1,2,3-triazoles may emerge as a promising tactic for the construction of molecular architectures of therapeutics and is considered to be a growing area of investigation. This interest extends beyond the regioselective Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) method that involves the trapping of Cu(I)-triazole with suitable precursors. In this Perspective, we highlight the growing impact of postclick strategies in organic synthesis required for the late-stage functionalization of 1,2,3-triazoles with a hope that this emerging concept may provide ample opportunities in modern organic synthesis of notable applications in medicinal chemistry, biology, and materials science.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Department of Chemistry, A.P.S.M. College, Barauni, Begusarai, Bihar 851112, India
| | - Mayank Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Shen J, Li H, Li Y, Zhu Z, Luo K, Wu L. Visible-Light-Promoted Radical Cascade Sulfone Alkylation/Cyclization of 2-Isocyanoaryl Thioethers Enabled by Electron Donor-Acceptor Complex Formation. J Org Chem 2024; 89:10223-10233. [PMID: 38939958 DOI: 10.1021/acs.joc.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A photo-induced cascade sulfone alkylation/cyclization of 2-isocyanoaryl thioethers is explored. This visible-light-triggered reaction not only occurs under extremely mild reaction conditions but also does not require the presence of a photosensitizer. The photocatalytic process is triggered by the photochemical activity of in situ-generated electron donor-acceptor complexes, arising from the association of 2-isocyanoaryl thioethers and α-iodosulfones. The radical pathway was confirmed by UV-vis spectroscopy, radical trapping, Job's plot, and on/off irradiation experiments.
Collapse
Affiliation(s)
- Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Borrel J, Waser J. SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes. Beilstein J Org Chem 2024; 20:701-713. [PMID: 38590536 PMCID: PMC10999984 DOI: 10.3762/bjoc.20.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
We report the detailed background for the discovery and development of the synthesis of homopropargylic azides by the azido-alkynylation of alkenes. Initially, a strategy involving SOMOphilic alkynes was adopted, but only resulted in a 29% yield of the desired product. By switching to a radical-polar crossover approach and after optimization, a high yield (72%) of the homopropargylic azide was reached. Full insights are given about the factors that were essential for the success of the optimization process.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Borrel J, Waser J. Azido-alkynylation of alkenes through radical-polar crossover. Chem Sci 2023; 14:9452-9460. [PMID: 37712015 PMCID: PMC10498506 DOI: 10.1039/d3sc03309k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
We report an azido-alkynylation of alkenes allowing a straightforward access to homopropargylic azides by combining hypervalent iodine reagents and alkynyl-trifluoroborate salts. The design of a photocatalytic redox-neutral radical polar crossover process was key to develop this transformation. A variety of homopropargylic azides possessing electron-rich and -poor aryls, heterocycles or ether substituents could be accessed in 34-84% yield. The products are synthetically useful building blocks that could be easily transformed into pyrroles or bioactive amines.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
7
|
van Dalsen L, Brown RE, Rossi‐Ashton JA, Procter DJ. Sulfonium Salts as Acceptors in Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2023; 62:e202303104. [PMID: 36959098 PMCID: PMC10952135 DOI: 10.1002/anie.202303104] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This "sulfonium tag" approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Department of ChemistryThe University of ManchesterManchesterUK
| | | | | |
Collapse
|
8
|
Valentini F, Brufani G, Rossini G, Campana F, Lanari D, Vaccaro L. POLITAG-M-F as Heterogeneous Organocatalyst for the Waste-Minimized Synthesis of β-Azido Carbonyl Compounds in Batch and under Flow Conditions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:3074-3084. [PMID: 36844749 PMCID: PMC9945162 DOI: 10.1021/acssuschemeng.2c07213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We herein report a waste minimization protocol for the β-azidation of α,β-unsaturated carbonyl compounds using TMSN3. The selection of the appropriate catalyst (POLITAG-M-F), in combination with the reaction medium, resulted in enhanced catalytic efficiency and a low environmental footprint. The thermal and mechanical stability of the polymeric support allowed us to recover the POLITAG-M-F catalyst for up to 10 consecutive runs. The CH3CN:H2O azeotrope has a 2-fold positive effect on the process, increasing the efficiency of the protocol and minimizing waste generation. Indeed, the azeotropic mixture, used as a reaction medium and for the workup procedure, was recovered by distillation, leading to an easy and environmentally friendly procedure for product isolation in high yield and with a low E-factor. A comprehensive evaluation of the environmental profile was performed by the calculation of different green metrics (AE, RME, MRP, 1/SF) and a comparison with other literature available protocols. A flow protocol was defined to scale-up the process, and up to 65 mmol of substrates were efficiently converted with a productivity of 0.3 mmol/min.
Collapse
Affiliation(s)
- Federica Valentini
- Laboratory
of Green S.O.C.−Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, greensoc.chm.unipg.it
| | - Giulia Brufani
- Laboratory
of Green S.O.C.−Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, greensoc.chm.unipg.it
| | - Gabriele Rossini
- Laboratory
of Green S.O.C.−Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, greensoc.chm.unipg.it
| | - Filippo Campana
- Laboratory
of Green S.O.C.−Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, greensoc.chm.unipg.it
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), 50121 Firenze, Italy
| | - Daniela Lanari
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Luigi Vaccaro
- Laboratory
of Green S.O.C.−Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, greensoc.chm.unipg.it
| |
Collapse
|
9
|
Li Y, Wan TB, Guo B, Qi XW, Zhu C, Shen MH, Xu HD. Quaternization of azido-N-heteroarenes with Meerwein reagent: a straightforward synthesis of 2-azido(benzo)imidazolium and related azido-N-heteroarenium tetrafluoroborates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
11
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
12
|
Pandey CB, Mishra BK, Azaz T, Mourya H, Ram B, Tiwari B. A General Method for α-Oxyacylation of Vinyl Ketones Using Koser's Reagent. J Org Chem 2021; 86:17318-17327. [PMID: 34783551 DOI: 10.1021/acs.joc.1c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct general method for the preparation of α-oxyacylated vinyl ketones using Koser's hypervalent iodine reagent is reported. A variety of acyloxy groups from long-chain aliphatic, aromatic, α,β-unsaturated carboxylic acids have been installed efficiently for the first time. The oxyacylated adducts were used for the preparation of densely functionalized chiral δ-lactones and cyclopentenes using carbene organocatalysis.
Collapse
Affiliation(s)
- Chandra Bhan Pandey
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Tazeen Azaz
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Hemlata Mourya
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Bali Ram
- Department of Chemistry Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
13
|
Kim JY, Lee YS, Ryu DH. Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jae Yeon Kim
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| | - Yea Suel Lee
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
14
|
Yang Z, Liu Y, Cao K, Zhang X, Jiang H, Li J. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J Org Chem 2021; 17:771-799. [PMID: 33889219 PMCID: PMC8042489 DOI: 10.3762/bjoc.17.67] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The reversible, weak ground-state aggregate formed by dipole-dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor-acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
Collapse
Affiliation(s)
- Zhonglie Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610100, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Nakatsuji Y, Kobayashi Y, Masuda S, Takemoto Y. Azolium/Hydroquinone Organo-Radical Co-Catalysis: Aerobic C-C-Bond Cleavage in Ketones. Chemistry 2021; 27:2633-2637. [PMID: 33258523 DOI: 10.1002/chem.202004943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Organo-radical catalysts have recently attracted great interest, and the development of this field can be expected to broaden the applications of organocatalysis. Herein, the first example of a radical-generating system is reported that does not require any photoirradiation, radical initiators, or preactivated substrates. The oxidative C-C-bond cleavage of 2-substituted cyclohexanones was achieved using an azolium salt and a hydroquinone as co-catalysts. A catalytic mechanism was proposed based on the results of diffusion-ordered spectroscopy and cyclic voltammetry measurements, as well as computational studies.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Sakyo Masuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Takenaga N, Dohi T, China H, Kumar R. Azido, Cyano, and Nitrato Cyclic Hypervalent Iodine(III) Reagents in Heterocycle Synthesis. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Zhang X, Yang J, Xiong N, Han Z, Duan X, Zeng R. Indium-mediated annulation of 2-azidoaryl aldehydes with propargyl bromides to [1,2,3]triazolo[1,5- a]quinolines. Org Biomol Chem 2021; 19:6346-6352. [PMID: 34231622 DOI: 10.1039/d1ob01183a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient indium-mediated cascade annulation reaction of 2-azidoaryl aldehydes with propargyl bromides is reported. The aromatic 5/6/6-fused heterocycles, [1,2,3]triazolo[1,5-a]quinoline derivatives, could be constructed in one pot in moderate yields with a broad substrate scope. Mechanistic studies indicated that the reaction proceeded through allenol formation, azide-allene [3 + 2] cycloaddition, and dehydration. The synthetic potential of the products including the denitrogenative functionalization and the Pd-catalyzed coupling reactions has also been explored.
Collapse
Affiliation(s)
- Xiaomin Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Jiali Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Ni Xiong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Zhe Han
- School of Nuclear Science and Technology, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China
| | - Xinhua Duan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China. and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
19
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Crisenza GM, Mazzarella D, Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes. J Am Chem Soc 2020; 142:5461-5476. [PMID: 32134647 PMCID: PMC7099579 DOI: 10.1021/jacs.0c01416] [Citation(s) in RCA: 574] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/14/2022]
Abstract
The association of an electron-rich substrate with an electron-accepting molecule can generate a new molecular aggregate in the ground state, called an electron donor-acceptor (EDA) complex. Even when the two precursors do not absorb visible light, the resulting EDA complex often does. In 1952, Mulliken proposed a quantum-mechanical theory to rationalize the formation of such colored EDA complexes. However, and besides a few pioneering studies in the 20th century, it is only in the past few years that the EDA complex photochemistry has been recognized as a powerful strategy for expanding the potential of visible-light-driven radical synthetic chemistry. Here, we explain why this photochemical synthetic approach was overlooked for so long. We critically discuss the historical context, scientific reasons, serendipitous observations, and landmark discoveries that were essential for progress in the field. We also outline future directions and identify the key advances that are needed to fully exploit the potential of the EDA complex photochemistry.
Collapse
Affiliation(s)
- Giacomo
E. M. Crisenza
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Daniele Mazzarella
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Aramaki Y, Imaizumi N, Hotta M, Kumagai J, Ooi T. Exploiting single-electron transfer in Lewis pairs for catalytic bond-forming reactions. Chem Sci 2020; 11:4305-4311. [PMID: 34122888 PMCID: PMC8152713 DOI: 10.1039/d0sc01159b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A single-electron transfer (SET) between tris(pentafluorophenyl)borane (B(C6F5)3) and N,N-dialkylanilines is reported, which is operative via the formation of an electron donor–acceptor (EDA) complex involving π-orbital interactions as a key intermediate under dark conditions or visible-light irradiation depending on the structure of the aniline derivatives. This inherent SET in the Lewis pairs initiates the generation of the corresponding α-aminoalkyl radicals and their additions to electron-deficient olefins, revealing the ability of B(C6F5)3 to act as an effective one-electron redox catalyst. Radical–ion pair generation from common Lewis pairs and its application to catalytic carbon–carbon bond formation.![]()
Collapse
Affiliation(s)
- Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
| | - Naoki Imaizumi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
| | - Mao Hotta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
| | - Jun Kumagai
- Institute of Materials and Systems for Sustainability, Nagoya University Nagoya 464-8601 Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan .,CREST, Japan Science and Technology Agency (JST), Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
22
|
Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151506] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Moon DY, An S, Park BS. Synthesis of α,β-dibromo ketones by photolysis of α-bromo ketones with N-bromosuccinimide: Photoinduced β-bromination of α-bromo ketones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Bosque I, Bach T. 3-Acetoxyquinuclidine as Catalyst in Electron Donor–Acceptor Complex-Mediated Reactions Triggered by Visible Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01039] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Irene Bosque
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
25
|
Pal S, Gaumont AC, Lakhdar S, Gillaizeau I. Diphenyliodonium Ion/Et3N Promoted Csp2-H Radical Phosphorylation of Enamides. Org Lett 2019; 21:5621-5625. [DOI: 10.1021/acs.orglett.9b01963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suman Pal
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d’Orléans, Pôle chimie, rue de Chartres, 45100 Orléans, France
| | - Annie-Claude Gaumont
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 Boulevard Maréchal Juin, Caen 14000 France
| | - Sami Lakhdar
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 Boulevard Maréchal Juin, Caen 14000 France
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d’Orléans, Pôle chimie, rue de Chartres, 45100 Orléans, France
| |
Collapse
|
26
|
Yang B, Ren X, Shen X, Li T, Lu Z. Visible Light-Promoted Three-Component Carboazidation of Unactivated Alkenes with TMSN3
and Acrylonitrile. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800320] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Yang
- Department of Chemistry; Zhejiang University; Hangzhou 310058 China
| | - Xiang Ren
- Department of Chemistry; Zhejiang University; Hangzhou 310058 China
| | - Xuzhong Shen
- Department of Chemistry; Zhejiang University; Hangzhou 310058 China
| | - Tongtong Li
- Department of Chemistry; Zhejiang University; Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
27
|
Carlson AS, Calcanas C, Brunner RM, Topczewski JJ. Regiocontrolled Wacker Oxidation of Cinnamyl Azides. Org Lett 2018; 20:1604-1607. [PMID: 29498865 DOI: 10.1021/acs.orglett.8b00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective Wacker oxidation has been developed for the oxidation of cinnamyl azides. The catalytic oxidation tolerates the azide functionality, and more than 15 β-azido ketones were isolated (25-92% yield). High regioselectivity for the aryl ketone is observed in all cases. A robustness screen was conducted to determine functional group tolerance. The products of the oxidaiton can be readily diversified.
Collapse
Affiliation(s)
- Angela S Carlson
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Cristian Calcanas
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Ryan M Brunner
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
28
|
Tang X, Studer A. Alkene 1,2-Difunctionalization by Radical Alkenyl Migration. Angew Chem Int Ed Engl 2018; 57:814-817. [PMID: 29165859 PMCID: PMC5838557 DOI: 10.1002/anie.201710397] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Transition-metal-free radical α-perfluoroalkylation with the accompanying vicinal β-alkenylation of unactivated alkenes is presented. These radical cascades proceed by means of 1,4- or 1,5-alkenyl migration by electron catalysis on readily accessed allylic alcohols. The reactions comprise a regioselective perfluoroalkyl radical addition with subsequent alkenyl migration and concomitant deprotonation to generate a ketyl radical anion that sustains the chain as a single-electron-transfer reducing reagent.
Collapse
Affiliation(s)
- Xinjun Tang
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
29
|
Li ZR, Wu DQ, Sun J, Shen J, Deng QH. Metal-Free Azidoarylation of Vinylcyclopropanes for the Synthesis of N3
-Containing Dihydronaphthalenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zong-Rui Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; 100 Guilin Road Shanghai 200234 P. R. China
| | - Dun-Qi Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; 100 Guilin Road Shanghai 200234 P. R. China
| | - Jian Sun
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; 100 Guilin Road Shanghai 200234 P. R. China
| | - Jing Shen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; 100 Guilin Road Shanghai 200234 P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; 100 Guilin Road Shanghai 200234 P. R. China
| |
Collapse
|
30
|
|
31
|
Affiliation(s)
- Xinjun Tang
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|