1
|
Zheng MM, Rao Z, Sang Y, Shao Q, Xu H, Xue XS. Insights into the Halogen Effects on Regioselectivities of Nucleophilic Haloalkylation of α,β-Enones. Chem Asian J 2025; 20:e202500055. [PMID: 39948036 DOI: 10.1002/asia.202500055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Indexed: 02/23/2025]
Abstract
The halogen effects, specifically the replacement of chlorine with fluorine, on the shift in regioselectivity from 1,4- to 1,2-addition in the nucleophilic haloalkylation of α,β-enones have been investigated using density functional theory (DFT) calculations. Computational analysis revealed that the difluorocarbanion PhSO2CF2 -, being a hard nucleophile with lower energy of the highest occupied molecular orbital (HOMO), selectively undergoes 1,2-addition of chalcone, primarily dominated by Coulombic interactions. In contrast, the nucleophilic 1,4-addition of chalcone by a soft dichlorocarbanion PhSO2CCl2 - is controlled by frontier molecular orbital interactions. This work provides a deep understanding of the regioselective control in nucleophilic haloalkylation reactions.
Collapse
Affiliation(s)
- Meng-Meng Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Zizhen Rao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yueqian Sang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Haoran Xu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Dhami A, Chandrasekharan SP, Mohanan K. BF 3-Mediated C2-Amidation of Quinoline N-Oxides Employing Trifluorodiazoethane and Acetonitrile: Access to 2- N-(Trifluoroethyl)amidoquinolines. Org Lett 2025; 27:180-185. [PMID: 39706825 DOI: 10.1021/acs.orglett.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
A Lewis acid-mediated C2-N-trifluoroethylamidation of quinolines, employing quinoline N-oxides, trifluorodiazoethane, and acetonitrile to forge a new class of N-(quinolin-2-yl)-N-(trifluoroethyl)acetamide is presented in this Letter. The reaction proceeds through a carbene generation/nitrile ylide formation/(3 + 2) cycloaddition/rearrangement cascade to furnish quinoline-2-N-(trifluoroethyl)acetamide derivatives in high yields.
Collapse
Affiliation(s)
- Anamika Dhami
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Sanoop P Chandrasekharan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
3
|
Das S, McIvor C, Greener A, Suwita C, Argent SP, O'Duill ML. 2,2-Difluoroethylation of Heteroatom Nucleophiles via a Hypervalent Iodine Strategy. Angew Chem Int Ed Engl 2024; 63:e202410954. [PMID: 38900650 DOI: 10.1002/anie.202410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
The 2,2-difluoroethyl group is an important lipophilic hydrogen bond donor in medicinal chemistry, but its incorporation into small molecules is often challenging. Herein, we demonstrate electrophilic 2,2-difluoroethylation of thiol, amine and alcohol nucleophiles with a hypervalent iodine reagent, (2,2-difluoro-ethyl)(aryl)iodonium triflate, via a proposed ligand coupling mechanism. This transformation offers a complementary strategy to existing 2,2-difluoroethylation methods and allows access to a wide range of 2,2-difluoroethylated nucleophiles, including the drugs Captopril, Normorphine and Mefloquine.
Collapse
Affiliation(s)
- Suman Das
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte McIvor
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Andrew Greener
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte Suwita
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
4
|
Zhu H, Gao C, Yu T, Xu C, Wang M. O-Trifluoromethylation of Carboxylic Acids via the Formation and Activation of Acyloxy(phenyl)trifluoromethyl-λ 3-Iodanes. Angew Chem Int Ed Engl 2024; 63:e202400449. [PMID: 38483081 DOI: 10.1002/anie.202400449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/10/2024]
Abstract
Here we report the challenging O-trifluoromethylation of carboxylic acids via the formation and activation of acyloxy(phenyl)trifluoromethyl-λ3-iodanes. The method provides an easy access to various potentially valuable and hitherto elusive trifluoromethyl carboxylic esters. A remarkably wide range of substrates with commonly encountered functional groups are compatible with this reaction, including aromatic and aliphatic carboxylic acids, as well as Food and Drug Administration (FDA) approved drugs and pharmaceutically relevant molecules. The reaction mechanism and the origins of the enhanced reactivity by zinc chloride (ZnCl2) were discussed from experimental evidence and density functional theory (DFT) calculation.
Collapse
Affiliation(s)
- Hongye Zhu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Chi Gao
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Ting Yu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Xu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
5
|
Du Y, Mei H, Makarem A, Javahershenas R, Soloshonok VA, Han J. Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N, N-diacyl-β-amino esters. Beilstein J Org Chem 2024; 20:212-219. [PMID: 38318462 PMCID: PMC10840549 DOI: 10.3762/bjoc.20.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
An efficient multicomponent reaction of newly designed β-trifluoromethyl β-diazo esters, acetonitrile, and carboxylic acids via an interrupted esterification process under copper-catalyzed conditions has been developed, which affords various unsymmetrical β-trifluoromethyl N,N-diacyl-β-amino esters in good to excellent yields. The reaction features mild conditions, a wide scope of β-amino esters and carboxylic acids, and also applicability to large-scale synthesis, thus providing an efficient way for the synthesis of β-trifluoromethyl β-diacylamino esters. Furthermore, this reaction represents the first example of a Mumm rearrangement of β-trifluoromethyl β-diazo esters.
Collapse
Affiliation(s)
- Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ata Makarem
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Theoretical Study on the Origin of Abnormal Regioselectivity in Ring-Opening Reaction of Hexafluoropropylene Oxide. Molecules 2023; 28:molecules28041669. [PMID: 36838653 PMCID: PMC9962681 DOI: 10.3390/molecules28041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
That nucleophiles preferentially attack at the less sterically hindered carbon of epoxides under neutral and basic conditions has been generally accepted as a fundamental rule for predicting the regioselectivity of this type of reaction. However, this rule does not hold for perfluorinated epoxides, such as hexafluoropropylene oxide (HFPO), in which nucleophiles were found to attack at the more hindered CF3 substituted β-C rather than the fluorine substituted α-C. In this contribution, we aim to shed light on the nature of this intriguing regioselectivity by density functional theory methods. Our calculations well reproduced the observed abnormal regioselectivities and revealed that the unusual regiochemical preference for the sterically hindered β-C of HFPO mainly arises from the lower destabilizing distortion energy needed to reach the corresponding ring-opening transition state. The higher distortion energy required for the attack of the less sterically hindered α-C results from a significant strengthening of the C(α)-O bond by the negative hyperconjugation between the lone pair of epoxide O atom and the antibonding C-F orbital.
Collapse
|
7
|
Fang Z, Gong Y, Liu B, Zhang J, Han X, Liu Z, Ning Y. Rh-Catalyzed Coupling Reactions of Fluoroalkyl N-Sulfonylhydrazones with Azides Leading to α-Trifluoroethylated Imines. Org Lett 2022; 24:8920-8924. [DOI: 10.1021/acs.orglett.2c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Yanmei Gong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
8
|
Cai BG, Yao WZ, Li L, Xuan J. Visible-Light-Induced Imide Synthesis through a Nitrile Ylide Formation/Trapping Cascade. Org Lett 2022; 24:6647-6652. [PMID: 36053175 DOI: 10.1021/acs.orglett.2c02671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-promoted three component reaction of diazo compounds, nitriles, and carboxylic acids is reported. The reaction utilizes acceptor-only diazo compounds as carbene precursors and nitriles as carbene-trapping reagents to form the key nitrile ylides. Under the optimal reaction conditions, a wide range of imide products were obtained in good to excellent yields. The gram-scale synthesis and synthetic application of the imide products to form isoquinoline-1,3(2H,4H)-dione derivatives further proved the value of this method.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Wei-Zhong Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| |
Collapse
|
9
|
Zeng LY, Liu Y, Han J, Chen J, Liu S, Xi B. O-Methylation of carboxylic acids with streptozotocin. Org Biomol Chem 2022; 20:5230-5233. [PMID: 35621003 DOI: 10.1039/d2ob00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The clinically used DNA-alkylating drug streptozotocin (STZ) was investigated using a simple work-up as an O-methylating agent to transform various carboxylic acids, sulfonic acids and phosphorous acids into corresponding methyl esters, and did so with yields of up to 97% in 4 h at room temperature. Good substrate tolerance was observed, and benefited from the mild conditions and compatibility of the reaction with water.
Collapse
Affiliation(s)
- Li-Yan Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiakun Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinhong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baomin Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharma-ceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Zhang X, Li X, Sivaguru P, Wu J, Zanoni G, Song JN, Ning Y. Difluorodiazoethane as a masked acetylene equivalent in formal [3 + 2] cycloadditions with ketones to access 2,3-functionalized furans. Org Chem Front 2022. [DOI: 10.1039/d2qo01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free [3+2] cycloaddition of CF2HCHN2 with β-ketones is reported, which enables the synthesis of 2,3-functionalized furans. Sequential defluorination, nucleophilic addition, and cyclization are key elemental steps of the reaction.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Li
- School of Life Science, Jilin University, Changchun 130012, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Jin-Na Song
- School of Life Science, Jilin University, Changchun 130012, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Kumar A, Khan WA, Ahamad S, Mohanan K. Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anuj Kumar
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
| | | | - Shakir Ahamad
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
- Medicinal and Process Chemistry Division Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
12
|
Wang Q, Wang L, Pajkert R, Hajdin I, Mei H, Röschenthaler GV, Han J. [3+2] Cycloaddition reactions of β-diazo-α,α-difluoromethylphosphonates with α,β-unsaturated esters. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kumar A, Dhami A, Fairoosa J, Kant R, Mohanan K. Silver-Catalyzed Direct Synthesis of Trifluoromethylated Enaminopyridines and Isoquinolinones Employing Trifluorodiazoethane. Org Lett 2021; 23:5815-5820. [PMID: 34264078 DOI: 10.1021/acs.orglett.1c01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Letter reports a Ag-catalyzed three-component approach for the N-alkenylation of 2-aminopyridines employing aldehydes and trifluorodiazoethane. Unlike the known reactions of trifluorodiazoethane with imines, which generate Mannich adducts, aziridines, or triazolines depending on the substrates and conditions, this reaction, after Mannich addition, proceeds via a carbene formation and 1,2-aryl migration sequence to afford (E)-enaminopyridines. This surprising selectivity, which is effective for a wide range of aldehydes and 2-aminopyridines, has been subsequently explored to access trifluoromethylated isoquinolinones.
Collapse
Affiliation(s)
| | | | | | | | - Kishor Mohanan
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
14
|
Hu XG, Qiu XF, Liu DY, Zhang WF. Late-Stage Transformation of Carboxylic Acids to N-Trifluoroethylimides with Trifluoromethyl Diazomethane. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1339-3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe report the first systematic evaluation of the reaction of trifluoromethyl diazomethane (2,2,2-trifluorodiazoethane, CF3CHN2) with drug-like molecules. We found our previous copper-catalyzed transformation of carboxylic acids to the corresponding N-trifluoroethylimides with CF3CHN2 and acetonitrile is well-suited for the late-stage modification of drug and drug-like acids. A procedure that enables the use of solid nitriles and nitriles with high boiling points as viable substrates is also disclosed.
Collapse
Affiliation(s)
- Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University
| | - Xiao-Feng Qiu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University
| | - De-Yong Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University
| | - Wen-Feng Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University
| |
Collapse
|
15
|
Liu J, Xu J, Pajkert R, Mei H, Röschenthaler GV, Han J. Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Huang S, Xia Z, Lu K, Lu H, Tung C, Xu Z. S‐Trifluoroethyl
Benzenesulfonothioate: A
Bench‐Stable
Reagent for Electrophilic Trifluoroethylthiolation
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuai Huang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University Jinan Shandong 250100 China
| | - Ziheng Xia
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University Jinan Shandong 250100 China
| | - Kui Lu
- Land Surveying and Mapping Institute of Shandong Province Jinan Shandong 250013 China
| | - Haifeng Lu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University Jinan Shandong 250100 China
| | - Chen‐Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University Jinan Shandong 250100 China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University Jinan Shandong 250100 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
17
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
18
|
Chen L, Zhang L, Yan G, Huang D. Recent Advances of Cinnamic Acids in Organic Synthesis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lihua Chen
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
19
|
Chen S, Wang H, Jiang W, Rui PX, Hu XG. Synthesis of tri(di)fluoroethylanilines via copper-catalyzed coupling reaction of tri(di)fluoroethylamine with (hetero)aromatic bromides. Org Biomol Chem 2019; 17:9799-9807. [PMID: 31709436 DOI: 10.1039/c9ob02271f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have realized the first Ullmann type coupling reaction of tri(di)fluoroethylamine with (hetero)aromatic bromides, employing 5-20 mol% Cu2O and an oxalamide ligand [N-(2,4,6-trimethoxyphenyl)acetamide]. This efficient and practical method has the following features: (i) avoids the use of an expensive catalyst; (ii) does not require anhydrous solvent and strict air extrusion; (iii) uses bench stable and inexpensive (hetero)aromatic bromides; (iv) is suitable for the synthesis of fluoroalkylated hetero-aromatic substrates; (v) is suitable for gram-scale synthesis. This work also shows the "negative fluorine effect" for the alkylamines in the copper catalysed coupling reactions.
Collapse
Affiliation(s)
- Suo Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China.
| | - Hui Wang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China.
| | - Wei Jiang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Traditional Chinese Medicine, China
| | - Pei-Xin Rui
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China and Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China.
| |
Collapse
|
20
|
Kubyshkin V, Grage SL, Ulrich AS, Budisa N. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Phys Chem Chem Phys 2019; 21:22396-22408. [PMID: 31577299 DOI: 10.1039/c9cp02996f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II helices to hydrophobic mismatch is in some notable aspects different from α-helices. Finally, our results prove that the polyproline II helix is a competent structure for the construction of transmembrane peptide segments, despite the fact that no such motif has ever been reported in natural systems.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany and Institute of Organic Chemistry, KIT, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| |
Collapse
|
21
|
Xiong H, Wu X, Wang H, Sun S, Yu J, Cheng J. The Reaction of
o
‐Aminoacetophenone
N
‐Tosylhydrazone and CO
2
toward 1,4‐Dihydro‐2
H
‐3,1‐benzoxazin‐2‐ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Xiong
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Xiaopeng Wu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Hepan Wang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Song Sun
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Jin‐Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| |
Collapse
|
22
|
Chen Z, Ren N, Ma X, Nie J, Zhang FG, Ma JA. Silver-Catalyzed [3 + 3] Dipolar Cycloaddition of Trifluorodiazoethane and Glycine Imines: Access to Highly Functionalized Trifluoromethyl-Substituted Triazines and Pyridines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00846] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Nan Ren
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaoxiao Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
23
|
Mykhailiuk PK, Koenigs RM. Difluorodiazoethane (CF
2
HCHN
2
): A New Reagent for the Introduction of the Difluoromethyl Group. Chemistry 2019; 25:6053-6063. [DOI: 10.1002/chem.201804953] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/07/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd. Chervonotkatska 78 02094 Kyiv Ukraine
- Chemistry DepartmentTaras Shevchenko National University of Kyiv Volodymyrska 64 01601 Kyiv Ukraine
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
24
|
Kubyshkin V, Budisa N. Promotion of the collagen triple helix in a hydrophobic environment. Org Biomol Chem 2019; 17:2502-2507. [DOI: 10.1039/c9ob00070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The collagen triple helix is better suited for octanol than for water.
Collapse
Affiliation(s)
| | - Nediljko Budisa
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
- University of Manitoba
| |
Collapse
|
25
|
Gao Y, Peng SQ, Liu DY, Rui PX, Hu XG. Copper-Catalyzed Four-Component Reaction for the Synthesis ofN-Difluoroethyl Imides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- National Engineering Research Center for Carbohydrate Synthesis; Jiangxi Normal University; 330022 Nanchang P.R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education; Jiangxi Normal University; 330022 Nanchang, Jiangxi P.R. China
| | - Shan-Qing Peng
- National Engineering Research Center for Carbohydrate Synthesis; Jiangxi Normal University; 330022 Nanchang P.R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education; Jiangxi Normal University; 330022 Nanchang, Jiangxi P.R. China
| | - De-Yong Liu
- National Engineering Research Center for Carbohydrate Synthesis; Jiangxi Normal University; 330022 Nanchang P.R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education; Jiangxi Normal University; 330022 Nanchang, Jiangxi P.R. China
| | - Pei-Xin Rui
- National Engineering Research Center for Carbohydrate Synthesis; Jiangxi Normal University; 330022 Nanchang P.R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education; Jiangxi Normal University; 330022 Nanchang, Jiangxi P.R. China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis; Jiangxi Normal University; 330022 Nanchang P.R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education; Jiangxi Normal University; 330022 Nanchang, Jiangxi P.R. China
| |
Collapse
|
26
|
Guo R, Lv N, Zhang FG, Ma JA. Zinc-Mediated Mannich-Type Reaction of 2,2,2-Trifluorodiazoethane with Imines: Access to β-CF3-Amines. Org Lett 2018; 20:6994-6997. [DOI: 10.1021/acs.orglett.8b02816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ran Guo
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Ning Lv
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
27
|
AcOH-catalyzed aza-Michael addition/N-nitrosation: An efficient approach to CF2HCH2-containing N-nitrosoamines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Kubyshkin V, Budisa N. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid. J Pept Sci 2018; 24:e3076. [PMID: 29582506 DOI: 10.1002/psc.3076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The polyproline-II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and "unstructured" denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline-II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan-1-ol/water partitioning and inclusion in detergent micelles of the oligo-Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo-Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline-II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
29
|
Chen Z, Zhang Y, Nie J, Ma JA. Transition-Metal-Free [3 + 2] Cycloaddition of Nitroolefins and Diazoacetonitrile: A Facile Access to Multisubstituted Cyanopyrazoles. Org Lett 2018; 20:2120-2124. [DOI: 10.1021/acs.orglett.8b00729] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| |
Collapse
|
30
|
Zhang XW, Hu WL, Chen S, Hu XG. Cu-Catalyzed Synthesis of Fluoroalkylated Isoxazoles from Commercially Available Amines and Alkynes. Org Lett 2018; 20:860-863. [DOI: 10.1021/acs.orglett.7b04028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Wei Zhang
- National Engineering Research Center
for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Wen-Li Hu
- National Engineering Research Center
for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Suo Chen
- National Engineering Research Center
for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center
for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
31
|
Alapour S, Zamisa SJ, Silva JRA, Alves CN, Omondi B, Ramjugernath D, Koorbanally NA. Investigations into the flexibility of the 3D structure and rigid backbone of quinoline by fluorine addition to enhance its blue emission. CrystEngComm 2018. [DOI: 10.1039/c8ce00094h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Addition of fluorine to the quinoline structure was found to decrease its intermolecular interactions and influence its 3D structure.
Collapse
Affiliation(s)
- S. Alapour
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - S. J. Zamisa
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - J. R. A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - C. N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - B. Omondi
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - D. Ramjugernath
- School of Chemical Engineering
- University of KwaZulu-Natal
- Durban 4041
- South Africa
| | - N. A. Koorbanally
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| |
Collapse
|
32
|
Wang H, Tu YH, Liu DY, Hu XG. Cu-Catalyzed/mediated synthesis of N-fluoroalkylanilines from arylboronic acids: fluorine effect on the reactivity of fluoroalkylamines. Org Biomol Chem 2018; 16:6634-6637. [DOI: 10.1039/c8ob01581c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A copper catalyzed/mediated oxidative coupling of arylboronic acids and fluoroalkylated amines with an interesting reactivity trend is disclosed.
Collapse
Affiliation(s)
- Hui Wang
- National Engineering Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang
- China
| | - Yuan-Hong Tu
- National Engineering Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang
- China
| | - De-Yong Liu
- National Engineering Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang
- China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang
- China
| |
Collapse
|
33
|
Kubyshkin V, Budisa N. Hydrolysis, polarity, and conformational impact of C-terminal partially fluorinated ethyl esters in peptide models. Beilstein J Org Chem 2017; 13:2442-2457. [PMID: 29234471 PMCID: PMC5704756 DOI: 10.3762/bjoc.13.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Fluorinated moieties are highly valuable to chemists due to the sensitive NMR detectability of the 19F nucleus. Fluorination of molecular scaffolds can also selectively influence a molecule's polarity, conformational preferences and chemical reactivity, properties that can be exploited for various chemical applications. A powerful route for incorporating fluorine atoms in biomolecules is last-stage fluorination of peptide scaffolds. One of these methods involves esterification of the C-terminus of peptides using a diazomethane species. Here, we provide an investigation of the physicochemical consequences of peptide esterification with partially fluorinated ethyl groups. Derivatives of N-acetylproline are used to model the effects of fluorination on the lipophilicity, hydrolytic stability and on conformational properties. The conformational impact of the 2,2-difluoromethyl ester on several neutral and charged oligopeptides was also investigated. Our results demonstrate that partially fluorinated esters undergo variable hydrolysis in biologically relevant buffers. The hydrolytic stability can be tailored over a broad pH range by varying the number of fluorine atoms in the ester moiety or by introducing adjacent charges in the peptide sequence.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin 10623, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin 10623, Germany
| |
Collapse
|