1
|
Liu X, Bian Z, Hu S, Dickinson CF, Benjamin MM, Jia J, Tian Y, Place A, Hanna GS, Luesch H, Croot P, Reddy MM, Thomas OP, Hardiman G, Puglisi MP, Yang M, Zhong Z, Lemasters JJ, Korte JE, Waters AL, Heltzel CE, Williamson RT, Strangman WK, Valeriote F, Tius MA, DiTullio GR, Ferreira D, Alekseyenko A, Wang S, Hamann MT, Wang X. The Chemistry of Phytoplankton. Chem Rev 2024; 124:13099-13177. [PMID: 39571071 PMCID: PMC11638913 DOI: 10.1021/acs.chemrev.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Phytoplankton have a high potential for CO2 capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO2, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Zhiwei Bian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Shian Hu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Cody F. Dickinson
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jia Jia
- School
of Life Sciences, Shanghai University, Shanghai 200031, China
| | - Yintai Tian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Allen Place
- Institute
of Marine Biotechnology and Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - George S. Hanna
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development, University of Florida, Gainesville, Florida 32610, United States
- Program
in Cancer and Stem Cell Technology, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Peter Croot
- Irish
Centre
for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan
Institute, School of Natural Sciences, University
of Galway, Galway H91TK33, Ireland
| | - Maggie M. Reddy
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Olivier P. Thomas
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Gary Hardiman
- School of
Biological Sciences Institute for Global Food Security, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
| | - Melany P. Puglisi
- Department
of Pharmaceutical Sciences, Chicago State
University, Chicago, Illinois 60628, United States
| | - Ming Yang
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhi Zhong
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - John J. Lemasters
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeffrey E. Korte
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Amanda L. Waters
- Department
of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Carl E. Heltzel
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Fred Valeriote
- Henry
Ford Health Systems, Detroit, Michigan 48202, United States
| | - Marcus A. Tius
- Department
of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Giacomo R. DiTullio
- Department
of Oceanography, College of Charleston, Charleston, South Carolina 29403, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Alexander Alekseyenko
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shengpeng Wang
- State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Macau 999078, China
| | - Mark T. Hamann
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Xiaojuan Wang
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| |
Collapse
|
2
|
Trujillo-Sierra J, Sansano JM, Pardos J, Tejero T, Merino P, Retamosa MDG. Asymmetric Remote Aldol Cyclization Reaction to Synthesize Trifluoromethylated Heterospirocyclic Frameworks. J Org Chem 2024; 89:13654-13660. [PMID: 39234920 DOI: 10.1021/acs.joc.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The highly enantioselective organocatalytic synthesis of dihydropyran spirocyclic compounds bearing di- and trifluoromethyl groups by aldol cyclization reaction via trienamine using cyclic 2,5-dienones and different di- and trifluoromethylketones is described. Using a bifunctional aminothiourea catalyst, trifluoromethyl-functionalized dihydropyran spirocyclic products were obtained with good yields and enantioselectivities. Subsequent transformation with H2 and Pd/C has allowed the synthesis of the tetrahydropyran structure with three stereocenters. The plausible reaction mechanism was investigated by computational methods.
Collapse
Affiliation(s)
- José Trujillo-Sierra
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - José Miguel Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Jorge Pardos
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química Y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
3
|
Morishita M, Hada K, Kita M, Nishikawa T. The Asymmetric Total Synthesis and Configuration Confirmation of Aplysiaenal and Nhatrangin A, Truncated Derivatives of Aplysiatoxin and Oscillatoxin. JOURNAL OF NATURAL PRODUCTS 2023; 86:1033-1041. [PMID: 36999535 DOI: 10.1021/acs.jnatprod.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Asymmetric total syntheses of aplysiaenal (1) and nhatrangin A (2), truncated derivatives of the aplysiatoxin/oscillatoxin family of marine natural products, from configurationally defined intermediates are described. NMR spectra of our synthesized nhatrangin A did not match with either those obtained from authentic samples of the natural product or material obtained via two other total syntheses, but were similar to that obtained from a sample obtained in a third total synthesis. By independently synthesizing the fragments used in its total syntheses, we were able to confirm the configuration of nhatrangin A and clarified that the discrepancy in the spectroscopic data is due to salt formation of the carboxylic acid moiety.
Collapse
Affiliation(s)
- Mana Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kohei Hada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Hada K, Araki Y, Nokura Y, Urabe D, Nishikawa T. Collective Synthesis of Aplysiatoxin/Oscillatoxin Analogues by a Bioinspired Strategy. J Org Chem 2022; 87:15618-15633. [PMID: 36331394 DOI: 10.1021/acs.joc.2c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in the marine cyanobacteria natural products aplysiatoxin (ATX) and oscillatoxin (OTX) has been renewed recently due to the discovery of many new analogues, some exhibiting intriguing biological activities. We sought to develop a collective synthesis of these natural products, hypothesizing that ATX could serve as a common biosynthetic precursor. Herein, we reveal that the core structure of ATX has unique multiple reactivities giving access to the distinct ring structures of five of the analogues, depending upon the specific conditions used. Based on these findings, syntheses of the O-Me derivative of five analogues neo-deBr-ATX-B, OTX-H, OTX-D, neo-deBr-ATX-H, and OTX-I were achieved from the main fragment of ATX as a common intermediate in a few steps. These synthetic studies also led us to revise the relative configuration in the elucidated structures of neo-deBr-ATX-B and OTX-H, and obtain unnatural 8- and 12-membered lactones from the same intermediate.
Collapse
Affiliation(s)
- Kohei Hada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yusuke Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshihiko Nokura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Araki Y, Hanaki Y, Kita M, Hayakawa K, Irie K, Nokura Y, Nakazaki A, Nishikawa T. Total synthesis and biological evaluation of oscillatoxins D, E, and F. Biosci Biotechnol Biochem 2021; 85:1371-1382. [PMID: 33851985 DOI: 10.1093/bbb/zbab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 11/14/2022]
Abstract
Oscillatoxins (OTXs) and aplysiatoxins are biosynthetically related polyketides produced by marine cyanobacteria. We previously developed a synthetic route to phenolic O-methyl analogs of OTX-D and 30-methyl-OTX-D during collective synthesis of these natural products. According to our synthetic strategy, we achieved total synthesis of OTX-D, 30-methyl-OTX-D, OTX-E, and OTX-F by deprotecting the O-methyl group in an earlier intermediate, and determined their biological activities. Although OTX-D and 30-methyl-OTX-D have been reported to show antileukemic activity against L1210 cell line, we found that their cytotoxicity in vitro against this cell line is relatively weak (IC50: 29-52 µm). In contrast, OTX-F demonstrated cell line-selective antiproliferative activity against DMS-114 lung cancer cells, which implies that OTXs target as yet unknown target molecules as part of this unique activity.
Collapse
Affiliation(s)
- Yusuke Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Hanaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Nokura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Hanaki Y, Araki Y, Nishikawa T, C. Yanagita R. Oscillatoxin E and Its C7 Epimer Show Distinct Growth Inhibition Profiles against Several Cancer Cell Lines. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Satake M, Iguchi K, Watanabe R, Uchida H, Nagai H. Aplysiadione and aplysiaenal: Truncated biosynthetic intermediates of aplysiatoxins from a cyanobacterium. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020; 18:E173. [PMID: 32245015 PMCID: PMC7143316 DOI: 10.3390/md18030173] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.
Collapse
Affiliation(s)
- Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
| | - Aleksandra Belovanovic
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Milica Micic-Vicovac
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 ADY7 Dublin, Ireland;
| | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| |
Collapse
|
9
|
Liang X, Matthew S, Chen QY, Kwan JC, Paul VJ, Luesch H. Discovery and Total Synthesis of Doscadenamide A: A Quorum Sensing Signaling Molecule from a Marine Cyanobacterium. Org Lett 2019; 21:7274-7278. [PMID: 31414826 PMCID: PMC7325281 DOI: 10.1021/acs.orglett.9b02525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quorum sensing (QS) plays a critical role in the regulation of bacterial pathogenesis. Doscadenamide A (1a) was isolated from a marine cyanobacterium, its structure elucidated by NMR, and its activity linked to QS induction. The total synthesis of 1a was developed, and the absolute configuration confirmed through comparison of the isolated natural product with synthetic diastereomers. Our preliminary investigation indicated that 1a could activate QS signaling in a LasR-dependent manner.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
10
|
Campano TE, Iriarte I, Olaizola O, Etxabe J, Mielgo A, Ganboa I, Odriozola JM, García JM, Oiarbide M, Palomo C. Enantioselective Addition of Alkynyl Ketones to Nitroolefins Assisted by Brønsted Base/H‐Bonding Catalysis. Chemistry 2019; 25:4390-4397. [DOI: 10.1002/chem.201805542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Teresa E. Campano
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Igor Iriarte
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Olatz Olaizola
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Julen Etxabe
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Iñaki Ganboa
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - José M. Odriozola
- Departamento de Química AplicadaInstitute for Advanced Materials (INAMAT)Universidad Pública de Navarra 31006 Pamplona Spain
| | - Jesús M. García
- Departamento de Química AplicadaInstitute for Advanced Materials (INAMAT)Universidad Pública de Navarra 31006 Pamplona Spain
| | - Mikel Oiarbide
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| | - Claudio Palomo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHU Manuel Lardizabal 3 20018 San Sebastián Spain
| |
Collapse
|
11
|
Tang YH, Wu J, Fan TT, Zhang HH, Gong XX, Cao ZY, Zhang J, Lin HW, Han BN. Chemical and biological study of aplysiatoxin derivatives showing inhibition of potassium channel Kv1.5. RSC Adv 2019; 9:7594-7600. [PMID: 35521179 PMCID: PMC9061199 DOI: 10.1039/c9ra00965e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
Three new aplysiatoxins, neo-debromoaplysiatoxin D (1), oscillatoxin E (2) and oscillatoxin F (3), accompanied by four known analogues (4–7), were identified from the marine cyanobacterium Lyngbya sp. Structural frames differ amongst these metabolites, and therefore we classified compounds 1 and 4–6 as aplysiatoxins as they possess 6/12/6 and 6/10/6 tricyclic ring systems featuring a macrolactone ring, and compounds 2, 3 and 7 as oscillatoxins that feature a hexane-tetrahydropyran in a spirobicyclic system. Bioactivity experiments showed that compounds 1 and 4–6 presented significant expression of phosphor-PKCδ whereas compounds 2, 5 and 7 showed the most potent blocking activity against potassium channel Kv1.5 with IC50 values of 0.79 ± 0.032 μM, 1.28 ± 0.080 μM and 1.47 ± 0.138 μM, respectively. Molecular docking analysis supplementing the binding interaction of oscillatoxin E (2) and oscillatoxin F (3) with Kv1.5 showed oscillatoxin E (2) with a strong binding affinity of −37.645 kcal mol−1 and oscillatoxin F (3) with a weaker affinity of −32.217 kcal mol−1, further supporting the experimental data. New aplysiatoxin derivative (oscillatoxin E) exhibiting potent blocking activity against potassium channel Kv1.5 is consistent with molecular docking analysis.![]()
Collapse
Affiliation(s)
- Yang-Hua Tang
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jing Wu
- Department of Pathophysiology
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200025
- China
| | - Ting-Ting Fan
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Hui-Hui Zhang
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiao-Xia Gong
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Zheng-Yu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development
- China Pharmaceutical University
- Nanjing
- China
| | - Jian Zhang
- Department of Pathophysiology
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200025
- China
| | - Hou-Wen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Department of Pharmacy
- Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
| | - Bing-Nan Han
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
12
|
Han BN, Liang TT, Keen LJ, Fan TT, Zhang XD, Xu L, Zhao Q, Wang SP, Lin HW. Two Marine Cyanobacterial Aplysiatoxin Polyketides, Neo-debromoaplysiatoxin A and B, with K+ Channel Inhibition Activity. Org Lett 2018; 20:578-581. [DOI: 10.1021/acs.orglett.7b03672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bing-Nan Han
- Department
of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Research
Center for Marine Drugs, State Key Laboratory of Oncogenes and Related
Genes, Department of Pharmacy, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ting-Ting Liang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lawrence Jordan Keen
- Department
of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting-Ting Fan
- Department
of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Dan Zhang
- Department
of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Xu
- Department
of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Zhao
- Faculty
of Health Sciences, University of Macau, Macau, China
| | - Shu-Ping Wang
- Research
Center for Marine Drugs, State Key Laboratory of Oncogenes and Related
Genes, Department of Pharmacy, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hou-Wen Lin
- Research
Center for Marine Drugs, State Key Laboratory of Oncogenes and Related
Genes, Department of Pharmacy, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|