1
|
Fleurisson C, Graidia N, Azzouz J, Di Giorgio A, Gaysinski M, Foricher Y, Duca M, Benedetti E, Micouin L. Design and Evaluation of Azaspirocycles as RNA binders. Chemistry 2025; 31:e202403518. [PMID: 39533928 DOI: 10.1002/chem.202403518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study presents efficient synthetic pathways for preparing novel azaspirocycles. These methodologies involve functionalizing key bicyclic hydrazines with a substituent on one of their bridgehead carbon atoms. The desired spirocyclic cores were successfully obtained through double reductive amination reactions, intramolecular cyclizations, and cleavages of the N-N bond. The isolated molecules possess unique three-dimensional structures, suggesting potential applications in medicinal chemistry and drug discovery. With the growing interest in targeting nucleic acids as a complementary approach to protein-targeting strategies for developing novel active compounds, we investigated the potential of the synthesized azaspirocycles as RNA binders. As a proof of concept, we highlight the promising activity of some compounds as strong binders of HIV-1 TAR RNA and inhibitors of Tat/TAR interactions.
Collapse
Affiliation(s)
- Claire Fleurisson
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Nessrine Graidia
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Jihed Azzouz
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Marc Gaysinski
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Yann Foricher
- Sanofi R&D, Integrated Drug Discovery, F-94400, Vitry-sur-Seine, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Erica Benedetti
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Laurent Micouin
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
2
|
Bone KI, Puleo TR, Delost MD, Shimizu Y, Bandar JS. Direct Benzylic C-H Etherification Enabled by Base-Promoted Halogen Transfer. Angew Chem Int Ed Engl 2024; 63:e202408750. [PMID: 38937258 DOI: 10.1002/anie.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based methods for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.
Collapse
Affiliation(s)
- Kendelyn I Bone
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Michael D Delost
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Yuka Shimizu
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| |
Collapse
|
3
|
Mondal H. Halogen and Chalcogen Activation by Nucleophilic Catalysis. Chemistry 2024; 30:e202402261. [PMID: 39039960 DOI: 10.1002/chem.202402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
4
|
Salamanca-Perdigón K, Hurtado-Rodríguez D, Portilla J, Iriepa I, Rojas H, Becerra D, Castillo JC. Cs 2CO 3-Promoted Alkylation of 3-Cyano-2(1H)-Pyridones: Anticancer Evaluation and Molecular Docking. Chempluschem 2024; 89:e202400172. [PMID: 38840415 DOI: 10.1002/cplu.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Herein, a Cs2CO3-promoted N-alkylation of 3-cyano-2(1H)-pyridones containing alkyl groups with diverse alkyl halides to synthesize N-alkyl-2-pyridones over O-alkylpyridines is reported. The use of alkyl dihalides resulted in complex mixtures of N- and O-alkylated products. The primary factor influencing regioselectivity in these reactions is the electronic effects of substituents on the 2(1H)-pyridone ring, as evidenced by the preferential formation of O-alkylpyridines upon the introduction of aryl groups. Remarkably, we efficiently employed CuAAC and Ti(Oi-Pr)4-catalyzed amidation reactions to functionalize N-alkyl-2-pyridones containing propargyl and ester groups, leading to the synthesis of 1,2,3-triazoles and amides, respectively. Moreover, O-alkylpyridines 10 b and 10 d displayed remarkable selectivity toward the A-498 renal cancer cell line with growth inhibition percentages (%GI) of 54.75 and 67.64, respectively. The binding modes of compounds 10 b and 10 d to the PIM-1 kinase enzyme were determined through molecular docking studies.
Collapse
Affiliation(s)
- Kevin Salamanca-Perdigón
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Diana Hurtado-Rodríguez
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18 A-10, Bogota, 111711, Colombia
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona, Universidad de Alcalá, Km. 33, 6, 28871, Madrid, Spain
- Institute of Chemical Research Andrés M. del Río, Universidad de Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Hugo Rojas
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Diana Becerra
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia
| |
Collapse
|
5
|
Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Thianthrene/TfOH-catalyzed electrophilic halogenations using N-halosuccinimides as the halogen source. Chem Sci 2024; 15:13058-13067. [PMID: 39148788 PMCID: PMC11323329 DOI: 10.1039/d4sc04461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Organohalides are vital organic building blocks with applications spanning various fields. However, direct halogenation of certain neutral or unreactive substrates by using solely the regular halogenating reagents has proven challenging. Although various halogenation approaches via activating halogenating reagents or substrates have emerged, a catalytic system enabling broad substrate applicability and diverse halogenation types remains relatively underexplored. Inspired by the halogenation of arenes via thianthrenation of arenes, here we report that thianthrene, in combined use with trifluoromethanesulfonic acid (TfOH), could work as an effective catalytic system to activate regular halogenating reagents (NXS). This new protocol could accomplish multiple types of halogenation of organic compounds including aromatics, olefins, alkynes and ketones. The mechanism study indicated that a highly reactive electrophilic halogen thianthrenium species, formed in situ from the reaction of NXS with thianthrene in the presence of TfOH, was crucial for the efficient halogenation process.
Collapse
Affiliation(s)
- Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| |
Collapse
|
6
|
Balaraman K, Kyriazakos S, Palmer R, Thanzeel FY, Wolf C. Selective Csp 3-F Bond Functionalization with Lithium Iodide. SYNTHESIS-STUTTGART 2022; 54:4320-4328. [PMID: 36330045 PMCID: PMC9624501 DOI: 10.1055/s-0041-1738383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A highly efficient method for C-F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to the corresponding iodides which are isolated in 91-99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon-carbon, carbon-nitrogen and carbon-sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | | | - Rachel Palmer
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - F Yushra Thanzeel
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| |
Collapse
|
7
|
Kislyi VP, Maksimenko AS, Buikin PA, Daeva ED, Semenov VV. Preparation of Ring-Methoxylated Arylnitromethanes by the Victor Meyer Reaction. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractEasily accessible and stable ring-methoxylated benzyl chlorides react with AgNO2 to give mixtures of the corresponding arylnitromethanes and nitrite esters. A modified approach for the isolation of arylnitromethanes is described, which represents a valuable improvement of the established Victor Meyer reaction. The isolation technique, which involves reaction of the nitrite ester with urea in methanol, allows the desired arylnitromethanes to be isolated, without loss, in 29–75% yields, and generates the corresponding recyclable benzyl alcohols. Unexpectedly, ring-methoxylated benzyl iodides cannot be used because they are not sufficiently stable and produce tars under the developed reaction conditions.
Collapse
|
8
|
Lan Z, Lu Y. Photoiodization of toluene in a microflow platform. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat Commun 2021; 12:3873. [PMID: 34162859 PMCID: PMC8222362 DOI: 10.1038/s41467-021-24174-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Electrophilic halogenation reactions have been a reliable approach to accessing organohalides. During the past decades, various catalytic systems have been developed for the activation of haleniums. However, there is still a short of effective catalysts, which could cover various halogenation reactions and broad scope of unsaturated compounds. Herein, TEMPO (2,2,6,6-tetramethylpiperidine nitroxide) and its derivatives are disclosed as active catalysts for electrophilic halogenation of olefins, alkynes, and aromatics. These catalysts are stable, readily available, and reactive enough to activate haleniums including Br+, I+ and even Cl+ reagents. This catalytic system is applicable to various halogenations including haloarylation of olefins or dibromination of alkynes, which were rarely realized in previous Lewis base catalysis or Lewis acid catalysis. The high catalytic ability is attributed to a synergistic activation model of electrophilic halogenating reagents, where the carbonyl group and the halogen atom are both activated by present TEMPO catalysis. Organohalides are widely used as synthetic precursors and target products, but for various halogenation reactions there is a need for effective catalysts to activate commercially available haleniums. Here, the authors report that TEMPO and its derivatives are active catalysts for electrophilic halogenation of olefins, alkynes and aromatics, under mild reaction conditions and with good functional group tolerance.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Lingsheng Ai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiwen Gong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
10
|
Chen H, Wang L, Xu S, Liu X, He Q, Song L, Ji H. Selective Functionalization of Hydrocarbons Using a ppm Bioinspired Molecular Tweezer via Proton-Coupled Electron Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hongyu Chen
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Wang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sheng Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaohui Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Nandy A, Kazi I, Guha S, Sekar G. Visible-Light-Driven Halogen-Bond-Assisted Direct Synthesis of Heteroaryl Thioethers Using Transition-Metal-Free One-Pot C–I Bond Formation/C–S Cross-Coupling Reaction. J Org Chem 2021; 86:2570-2581. [DOI: 10.1021/acs.joc.0c02672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anuradha Nandy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 Tamil Nadu, India
| | - Imran Kazi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 Tamil Nadu, India
| | - Somraj Guha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 Tamil Nadu, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
12
|
Yoshida Y, Kukita M, Omori K, Mino T, Sakamoto M. Iminophosphorane-mediated regioselective umpolung alkylation reaction of α-iminoesters. Org Biomol Chem 2021; 19:4551-4564. [DOI: 10.1039/d1ob00596k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first regioselective umpolung alkylation of α-iminoesters with alkyl halides mediated by iminophosphorane has developed (up to 82% yield).
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Mayu Kukita
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Kazuki Omori
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
13
|
Wang Y, Su P. Why Can Cationic Halogen Bond Donors Activate the Ritter-Type Solvolysis of Benzhydryl Bromide but Cationic Hydrogen Bond Donors Can Not? ACS OMEGA 2020; 5:21862-21872. [PMID: 32905280 PMCID: PMC7469379 DOI: 10.1021/acsomega.0c03000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2020] [Indexed: 05/27/2023]
Abstract
It is found by experiment that the cationic halogen bond donors (cationic iodoimidazolium compounds) can activate the Ritter-type solvolysis of benzhydryl bromide, while the cationic hydrogen bond donors (cationic imidazolium compounds) could not. To understand the activation mechanism, various noncovalent interactions between benzhydryl bromide and a series of activators in solution, including halogen bond, hydrogen bond, lone pair···π/π+, and C-H···π/π+, were explored theoretically. Our study revealed that the activation difference can be contributed by the variation of the noncovalent interactions. For halogen bond donors, the successful activation is attributed by halogen bond and lone pair···π. The halogen bonds mainly provide the stabilization energy of the ion-pair complex with the help of lone pair···π. For hydrogen-bond donors, the contribution of the hydrogen bond is unable to compensate the like-charge repulsion arising from the generation of the carbocation, leading to the unsuccessful activation. In general, lone pair···π makes a difference.
Collapse
Affiliation(s)
- Yueyan Wang
- The State Key Laboratory
of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory
of Theoretical and Computational Chemistry, and College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peifeng Su
- The State Key Laboratory
of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory
of Theoretical and Computational Chemistry, and College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Zuo S, Liu J, Zuo A.
N
‐Hydroxy
‐1,6‐methano[10]annulene‐3,4‐dicarboximide/Co(
OAc
)
2
: A novel catalytic system for the aerobic oxidation of alkylarenes. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Ang Zuo
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
15
|
Yoshii T, Tsuzuki S, Sakurai S, Sakamoto R, Jiang J, Hatanaka M, Matsumoto A, Maruoka K. N-Hydroxybenzimidazole as a structurally modifiable platform for N-oxyl radicals for direct C-H functionalization reactions. Chem Sci 2020; 11:5772-5778. [PMID: 32832053 PMCID: PMC7416693 DOI: 10.1039/d0sc02134b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
A novel class of N-oxy radicals based on flexibly modifiable N-hydroxybenzimidazole skeleton was designed and applied to C–H functionalization reactions.
Methods for direct functionalization of C–H bonds mediated by N-oxyl radicals constitute a powerful tool in modern organic synthesis. While several N-oxyl radicals have been developed to date, the lack of structural diversity for these species has hampered further progress in this field. Here we designed a novel class of N-oxyl radicals based on N-hydroxybenzimidazole, and applied them to the direct C–H functionalization reactions. The flexibly modifiable features of these structures enabled facile tuning of their catalytic performance. Moreover, with these organoradicals, we have developed a metal-free approach for the synthesis of acyl fluorides via direct C–H fluorination of aldehydes under mild conditions.
Collapse
Affiliation(s)
- Tomomi Yoshii
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Saori Tsuzuki
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Shunya Sakurai
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Ryu Sakamoto
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Julong Jiang
- Institute for Research Initiatives , Division for Research Strategy , Graduate School of Materials Science , Data Science Center , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Miho Hatanaka
- Institute for Research Initiatives , Division for Research Strategy , Graduate School of Materials Science , Data Science Center , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan.,PRESTO , Japan Science and Technology (JST) , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo , Kyoto 606-8501 , Japan
| | - Keiji Maruoka
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan . .,Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo , Kyoto 606-8501 , Japan.,School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
16
|
Phosphine Oxides as Spectroscopic Halogen Bond Descriptors: IR and NMR Correlations with Interatomic Distances and Complexation Energy. Molecules 2020; 25:molecules25061406. [PMID: 32204523 PMCID: PMC7144381 DOI: 10.3390/molecules25061406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
An extensive series of 128 halogen-bonded complexes formed by trimethylphosphine oxide and various F-, Cl-, Br-, I- and At-containing molecules, ranging in energy from 0 to 124 kJ/mol, is studied by DFT calculations in vacuum. The results reveal correlations between R–X⋅⋅⋅O=PMe3 halogen bond energy ΔE, X⋅⋅⋅O distance r, halogen’s σ-hole size, QTAIM parameters at halogen bond critical point and changes of spectroscopic parameters of phosphine oxide upon complexation, such as 31P NMR chemical shift, ΔδP, and P=O stretching frequency, Δν. Some of the correlations are halogen-specific, i.e., different for F, Cl, Br, I and At, such as ΔE(r), while others are general, i.e., fulfilled for the whole set of complexes at once, such as ΔE(ΔδP). The proposed correlations could be used to estimate the halogen bond properties in disordered media (liquids, solutions, polymers, glasses) from the corresponding NMR and IR spectra.
Collapse
|
17
|
von der Heiden D, Vanderkooy A, Erdélyi M. Halogen bonding in solution: NMR spectroscopic approaches. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213147] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Onomura O, Yamamoto K, Toguchi H, Harada T, Kuriyama M. Oxidative C-C Bond Cleavage of N-Protected Cyclic Amines by HNO3-TFA System. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Bosnidou AE, Duhamel T, Muñiz K. Detection of the Elusive Nitrogen‐Centered Radicals from Catalytic Hofmann–Löffler Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alexandra E. Bosnidou
- The Barcelona Institute of Science and Technology Institute of Chemical Research of Catalonia (ICIQ) Av. Països Catalans 16 43007 Tarragona Spain
- Química Analítica y Química Orgánica Universidad Rovira i Virgili Carrer de Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Thomas Duhamel
- The Barcelona Institute of Science and Technology Institute of Chemical Research of Catalonia (ICIQ) Av. Països Catalans 16 43007 Tarragona Spain
- Facultad de Química Universidad de Oviedo 33006 Oviedo Spain
| | - Kilian Muñiz
- The Barcelona Institute of Science and Technology Institute of Chemical Research of Catalonia (ICIQ) Av. Països Catalans 16 43007 Tarragona Spain
- ICREA, Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
20
|
LaMartina KB, Kuck HK, Oglesbee LS, Al-Odaini A, Boaz NC. Selective benzylic C-H monooxygenation mediated by iodine oxides. Beilstein J Org Chem 2019; 15:602-609. [PMID: 30931001 PMCID: PMC6423598 DOI: 10.3762/bjoc.15.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
A method for the selective monooxdiation of secondary benzylic C–H bonds is described using an N-oxyl catalyst and a hypervalent iodine species as a terminal oxidant. Combinations of ammonium iodate and catalytic N-hydroxyphthalimide (NHPI) were shown to be effective in the selective oxidation of n-butylbenzene directly to 1-phenylbutyl acetate in high yield (86%). This method shows moderate substrate tolerance in the oxygenation of substrates containing secondary benzylic C–H bonds, yielding the corresponding benzylic acetates in good to moderate yield. Tertiary benzylic C–H bonds were shown to be unreactive under similar conditions, despite the weaker C–H bond. A preliminary mechanistic analysis suggests that this NHPI-iodate system is functioning by a radical-based mechanism where iodine generated in situ captures formed benzylic radicals. The benzylic iodide intermediate then solvolyzes to yield the product ester.
Collapse
Affiliation(s)
- Kelsey B LaMartina
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Haley K Kuck
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Linda S Oglesbee
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Asma Al-Odaini
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Nicholas C Boaz
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA.,Department of Chemistry, Frick Chemical Laboratory, Princeton University, Washington Road, Princeton, NJ 08544 USA.,Permanent address: Department of Chemistry, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA; phone: +1-630-637-5187
| |
Collapse
|
21
|
Del Castillo E, Martínez MD, Bosnidou AE, Duhamel T, O'Broin CQ, Zhang H, Escudero-Adán EC, Martínez-Belmonte M, Muñiz K. Multiple Halogenation of Aliphatic C-H Bonds within the Hofmann-Löffler Manifold. Chemistry 2018; 24:17225-17229. [PMID: 30189118 DOI: 10.1002/chem.201804504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/17/2022]
Abstract
An innovative approach to position-selective polyhalogenation of aliphatic hydrocarbon bonds is presented. The reaction proceeded within the Hofmann-Löffler manifold with amidyl radicals as the sole mediators to induce selective 1,5- and 1,6-hydrogen-atom transfer followed by halogenation. Multiple halogenation events of up to four innate C-H bond functionalizations were accomplished. The broad applicability of this new entry into polyhalogenation and the resulting synthetic possibilities were demonstrated for a total of 27 different examples including mixed halogenations.
Collapse
Affiliation(s)
- Estefanía Del Castillo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mario D Martínez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alexandra E Bosnidou
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Thomas Duhamel
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Facultad de Química, Universidad de Oviedo, C/Julián Clavería, 33006, Oviedo, Spain
| | - Calvin Q O'Broin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Hongwei Zhang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marta Martínez-Belmonte
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
22
|
Tepper R, Schubert US. Halogenbrücken in Lösung: Anionenerkennung, Templat‐gestützte Selbstorganisation und Organokatalyse. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707986] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ronny Tepper
- Institut für Organische Chemie und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| | - Ulrich S. Schubert
- Institut für Organische Chemie und Makromolekulare Chemie (IOMC) Friedrich-Schiller-Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Jena Center for Soft Matter (JCSM) Friedrich-Schiller-Universität Jena Philosophenweg 7 07743 Jena Deutschland
| |
Collapse
|
23
|
Tepper R, Schubert US. Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis. Angew Chem Int Ed Engl 2018; 57:6004-6016. [PMID: 29341377 DOI: 10.1002/anie.201707986] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Indexed: 12/21/2022]
Abstract
The halogen bond is a supramolecular interaction between a Lewis-acidic region of a covalently bound halogen and a Lewis base. It has been studied widely in silico and experimentally in the solid state; however, solution-phase applications have attracted enormous interest in the last few years. This Minireview highlights selected recent developments in halogen bond interactions in solution, with a focus on the use of receptors based on halogen bonds in anion recognition and sensing, anion-templated self-assembly, as well as in organocatalysis.
Collapse
Affiliation(s)
- Ronny Tepper
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|