1
|
Li J, Zhou H, Mei S, Ma W, Yang J. Photoredox-Catalyzed Radical Hydroalkylation of Azobenzenes with Alkylboronic Acids. Org Lett 2025; 27:4569-4573. [PMID: 40249063 DOI: 10.1021/acs.orglett.5c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The facile synthesis of N-alkyl-N,N'-diarylhydrazines has been a long-standing challenge. Here, we report a photoredox-catalyzed hydroalkylation of azobenzenes with alkylboronic acids, which successfully affords diverse N-alkyl-N,N'-diarylhydrazines. With an acridinium salt as the photocatalyst and upon visible light irradiation, a broad range of azobenzenes and alkylboronic acids reacted smoothly in the presence of a Lewis base at ambient temperature. Mechanistic studies revealed that the reaction proceeds via the generation of alkyl radicals and is facilitated by photoredox catalysis.
Collapse
Affiliation(s)
- Jiangjiang Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shouying Mei
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wantong Ma
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
2
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
3
|
Holovach S, Poroshyn I, Melnykov KP, Liashuk OS, Pariiska OO, Kolotilov SV, Rozhenko AB, Volochnyuk DM, Grygorenko OO. Parallel Minisci Reaction of gem-Difluorocycloalkyl Building Blocks. ACS ORGANIC & INORGANIC AU 2024; 4:424-431. [PMID: 39132014 PMCID: PMC11311045 DOI: 10.1021/acsorginorgau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/13/2024]
Abstract
Parallel Minisci reactions of nonfluorinated and gem-difluorinated C4-C7 cycloalkyl building blocks (trifluoroborates and carboxylic acids) with a series of electron-deficient heterocycles were studied. A comparison of the reaction's outcome revealed better product yields in the case of carboxylic acids as the radical precursors in most cases, albeit these reagents were used with three-fold excess under optimized conditions. The nature of the heterocyclic core was found to be important for successful incorporation of the cycloalkyl fragment. The impact of the CF2 moiety on the oxidation potential of fluorinated cycloalkyl trifluoroborates and the reaction outcome, in general, was also evaluated.
Collapse
Affiliation(s)
- Serhii Holovach
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| | - Illia Poroshyn
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Kostiantyn P. Melnykov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr S. Liashuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Olena O. Pariiska
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Sergey V. Kolotilov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Alexander B. Rozhenko
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Dmytro M. Volochnyuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| |
Collapse
|
4
|
Brown JI, Persaud R, Iliev P, Karmacharya U, Attarha S, Sahile H, Olsen JE, Hanke D, Idowu T, Frank DA, Frankel A, Williams KC, Page BDG. Investigating the anti-cancer potential of pyrimethamine analogues through a modern chemical biology lens. Eur J Med Chem 2024; 264:115971. [PMID: 38071795 DOI: 10.1016/j.ejmech.2023.115971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023]
Abstract
Pharmacological inhibition of dihydrofolate reductase (DHFR) is an established approach for treating a variety of human diseases, including foreign infections and cancer. However, treatment with classic DHFR inhibitors, such as methotrexate (MTX), are associated with negative side-effects and resistance mechanisms that have prompted the search for alternatives. The DHFR inhibitor pyrimethamine (Pyr) has compelling anti-cancer activity in in vivo models, but lacks potency compared to MTX, thereby requiring higher concentrations to induce therapeutic responses. The purpose of this work was to investigate structural analogues of Pyr to improve its in vitro and cellular activity. A series of 36 Pyr analogues were synthesized and tested in a sequence of in vitro and cell-based assays to monitor their DHFR inhibitory activity, cellular target engagement, and impact on breast cancer cell viability. Ten top compounds were identified, two of which stood out as potential lead candidates, 32 and 34. These functionalized Pyr analogues potently engaged DHFR in cells, at concentrations as low as 1 nM and represent promising DHFR inhibitors that could be further explored as potential anti-cancer agents.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Rosanne Persaud
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ujjwala Karmacharya
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sanaz Attarha
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Henok Sahile
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jonas E Olsen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Danielle Hanke
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Temilolu Idowu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David A Frank
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
Yue F, Ma H, Song H, Liu Y, Dong J, Wang Q. Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K 3PO 4. Chem Sci 2022; 13:13466-13474. [PMID: 36507180 PMCID: PMC9683010 DOI: 10.1039/d2sc05521j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the ubiquity of alkylboronic acids in organic synthesis, their utility as alkyl radical precursors in visible-light-induced photocatalytic reactions is limited by their high oxidation potentials. In this study, we demonstrated that an inorganophosphorus compound can modulate the oxidation potentials of alkylboronic acids so that they can act as alkyl radical precursors. We propose a mechanism based on the results of fluorescence quenching experiments, electrochemical experiments, 11B and 31P NMR spectroscopy, and other techniques. In addition, we describe a simple and reliable alkylation method that has good functional group tolerance and can be used for direct C-B chlorination, cyanation, vinylation, alkynylation, and allylation, as well as late-stage functionalization of derivatized drug molecules. Notably, alkylboronic acids can be selectively activated in the presence of a boronic pinacol ester.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| |
Collapse
|
6
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
7
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
8
|
Facile synthesis of 1-substituted 4-H phthalazine, a versatile scaffold for chemically diverse phthalazines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Shang X, Liu ZQ. Advances in free-radical alkylation and arylation with organoboronic acids. Org Biomol Chem 2022; 20:4074-4080. [PMID: 35535704 DOI: 10.1039/d2ob00532h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organoboronic acids act as carbon-centered radical precursors that are widely utilized to construct diverse C-C bonds. This review summarizes the advances in this field. The content is divided into four parts according to the different categories of coupling partners with organoboronic acids. The reaction conditions as well as the mechanisms are demonstrated in each part.
Collapse
Affiliation(s)
- Xiaojie Shang
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu 730070, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Thakur A, - M, Kumar I, Sharma U. Visible Light Induced Functionalization of C‐H Bonds: Opening of New Avenues in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Thakur
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Manisha -
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Inder Kumar
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Upendra Sharma
- CSIR-Institute of Himalayan Bioresource Technology Natural Product Chemistry and Process Development Division Palampur, IndiaPalampur 176061 Palampur INDIA
| |
Collapse
|
11
|
Sebastian D, Willoughby PH, Lakshman MK. Cross-dehydrogenative coupling of ethers and amides with the tautomerizable quinazolinones, and mechanistic studies. Org Biomol Chem 2022; 20:5735-5746. [DOI: 10.1039/d2ob00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-dehydrogenative coupling reactions have been utilized to alkylate 4(3H)-quinazolinones with ethers and amides, using catalytic n-Bu4NI and t-BuOOH as oxidant. Reactions with amides represent the first examples under such conditions....
Collapse
|
12
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
13
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
14
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
15
|
Wang C, Shi H, Deng GJ, Huang H. Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Org Biomol Chem 2021; 19:9177-9181. [PMID: 34647121 DOI: 10.1039/d1ob01799c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced photoredox Minisci alkylation reaction of N-heteroarenes with ethyl acetate has been reported. The low-toxic ethyl acetate was used for the first time as an alkylation reagent. Hence, 4-quinazolinones, quinolines and pyridines reacted smoothly in the current reaction system. Mechanistic studies indicate that LiBr plays a key role to dramatically improve the efficiency of the reaction by the mediation of hydrogen atom transfer.
Collapse
Affiliation(s)
- Chunlian Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hang Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
16
|
Pan C, Yuan C, Yu J. Molecular Oxygen‐Mediated Radical Cyclization of Acrylamides with Boronic Acids. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Cheng Yuan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Jin‐Tao Yu
- School of Petrochemical Engineering Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology Changzhou University Changzhou 213164 People's Republic of China
| |
Collapse
|
17
|
Wu C, Ying T, Yang X, Su W, Dushkin AV, Yu J. Mechanochemical Magnesium-Mediated Minisci C-H Alkylation of Pyrimidines with Alkyl Bromides and Chlorides. Org Lett 2021; 23:6423-6428. [PMID: 34351160 DOI: 10.1021/acs.orglett.1c02241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method to synthesize 4-alkylpyrimidines by the mechanochemical magnesium-mediated Minisci reaction of pyrimidine derivatives and alkyl halides has been reported. The reaction process operates with a broad substrate scope and excellent regioselectivity under mild conditions with no requirement of transition-metal catalysts, solvents, and inert gas protection. The practicality of this protocol has been demonstrated by the up-scale synthesis, mechanochemical product derivatization, and antimalarial drug pyrimethamine preparation.
Collapse
Affiliation(s)
- Chongyang Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Tao Ying
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Xinjie Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Alexandr V Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
- Institute of Solid-State Chemistry and Mechanochemistry, Novosibirsk 630128, Russia
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| |
Collapse
|
18
|
Ranjan P, Pillitteri S, Coppola G, Oliva M, Van der Eycken EV, Sharma UK. Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prabhat Ranjan
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Guglielmo Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Visible-light-induced chemoselective reactions of quinoxalin-2(1H)-ones with alkylboronic acids under air/N2 atmosphere. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
21
|
Yang L, Qiu Z, Wu J, Zhao J, Shen T, Huang X, Liu ZQ. Molecular Oxygen-Mediated Radical Alkylation of C(sp 3)-H Bonds with Boronic Acids. Org Lett 2021; 23:3207-3210. [PMID: 33821663 DOI: 10.1021/acs.orglett.1c00948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct and site-specific alkylation of (sp3)C-H bond with aliphatic boronic acid was achieved. By simply heating glycinates and amines together with alkylboronic acids under an oxygen atmosphere, a variety of unnatural α-amino acids and peptides could be obtained in good yields.
Collapse
Affiliation(s)
- Le Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhihong Qiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jintao Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
22
|
|
23
|
Wang J, Su Y, Quan Z, Li J, Yang J, Yuan Y, Huo C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem Commun (Camb) 2021; 57:1959-1962. [DOI: 10.1039/d0cc07688k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated aerobic α-alkylation reaction of glycine derivatives with alkyl boronic acids has been established in the presence of a Ru/Cu catalyst system, giving the desired radical coupling products efficiently.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Jie Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
24
|
Luo W, Yang Y, Liu B, Yin B. Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. J Org Chem 2020; 85:9396-9404. [PMID: 32524818 DOI: 10.1021/acs.joc.0c01002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A protocol for FeCl2-catalyzed oxidative decarbonylative α-alkylation of acyl furans using alkyl aldehydes as the alkylating agents has been developed. This protocol affords α-alkyl-α-acylfurans in moderate to good yields in a practical and sustainable fashion. Mechanistic studies suggest that the reaction proceeds via generation of an alkyl radical from the alkyl aldehyde, addition of the radical to the furan ring, and subsequent rearomatization.
Collapse
Affiliation(s)
- Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
25
|
Yang H, Xu J, Zhang Y, He L, Zhang P, Li W. Synthesis of quinazoin-4-ones through an acid ion exchange resin mediated cascade reaction. Org Biomol Chem 2020; 18:4406-4414. [PMID: 32459237 DOI: 10.1039/d0ob00881h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
An interesting cascade reaction of N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide in the presence of an acid ion exchange resin is described. In this reaction, a range of substrates bearing various substituent groups are well compatible. This work provides a green and atom-economical alternative approach for the synthesis of quinazolin-4-ones in good yields.
Collapse
Affiliation(s)
- Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yilan Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
26
|
Huang S, Bao X, Fu Y, Zhang Y, Quan Z, Huo C. Auto‐Oxidative Povarov/Aromatization Tandem Reaction of Glycine Derivatives with Enamides: Acylamino as both Activating and Leaving Group. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Songhai Huang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Ying Fu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Yongxin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Zhengjun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
27
|
Li F, Gu XJ, Zeng CE, Li X, Liu B, Huang GL. Copper(I)/Bpy-Catalyzed C-2-H Benzylation of Quinazolin-4(3H
)-ones with N
-Tosylhydrazones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fei Li
- School of Chemistry and Chemical Engineering; Yunnan Normal University; 650500 Kunming China
| | - Xiao-Juan Gu
- School of Chemistry and Chemical Engineering; Yunnan Normal University; 650500 Kunming China
| | - Chang-E. Zeng
- School of Chemistry and Chemical Engineering; Yunnan Normal University; 650500 Kunming China
| | - Xia Li
- Department of Library; Yunnan Normal University; 650500 Kunming China
| | - Bo Liu
- School of Chemistry and Chemical Engineering; Yunnan Normal University; 650500 Kunming China
| | - Guo-Li Huang
- School of Chemistry and Chemical Engineering; Yunnan Normal University; 650500 Kunming China
| |
Collapse
|
28
|
Li X, Yan X, Wang Z, He X, Dai Y, Yan X, Zhao D, Xu X. Complementary Oxidative Generation of Iminyl Radicals from α-Imino-oxy Acids: Silver-Catalyzed C–H Cyanoalkylation of Heterocycles and Quinones. J Org Chem 2020; 85:2504-2511. [DOI: 10.1021/acs.joc.9b03204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoyu Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxue He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuyu Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinhuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Deming Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
29
|
Dong J, Yue F, Song H, Liu Y, Wang Q. Visible-light-mediated photoredox minisci C–H alkylation with alkyl boronic acids using molecular oxygen as an oxidant. Chem Commun (Camb) 2020; 56:12652-12655. [DOI: 10.1039/d0cc05946c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Direct visible-light-mediated Minisci C–H alkylation reactions of N-heteroarenes with alkyl boronic acids at room temperature with molecular oxygen as an oxidant and boronic acid activation reagent were reported.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
30
|
Wang Z, Ji X, Han T, Deng G, Huang H. LiBr‐Promoted Photoredox Minisci‐Type Alkylations of Quinolines with Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901168] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Tonghao Han
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
31
|
Wang P, Yang Z, Wang Z, Xu C, Huang L, Wang S, Zhang H, Lei A. Electrochemical Arylation of Electron-Deficient Arenes through Reductive Activation. Angew Chem Int Ed Engl 2019; 58:15747-15751. [PMID: 31433101 DOI: 10.1002/anie.201909600] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 01/28/2023]
Abstract
An electrochemical method has been developed to achieve arylation of electron-deficient arenes through reductive activation. Various electron-deficient arenes and aryldiazonium tetrafluoroborates are amenable to this transformation within the conditions of an undivided cell, providing the desired products in up to 92 % yield. Instead of preparing diazonium reagents, these reactions can begin from anilines, and they can be carried out in one pot. Electron paramagnetic resonance studies indicate that cathodic reduction of quinoxaline occurs using the transformation. Moreover, cyclic voltammetry indicates that both quinoxaline and aryl diazonium salt have relatively low reduction potentials, which suggests they can be activated through reduction during the reaction.
Collapse
Affiliation(s)
- Pan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Zhenlin Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Ziwei Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Chenyang Xu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lei Huang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
32
|
Tian X, Ren Y, Cheng X, Lu W. Aerobic Oxidative C(CO)–C Bond Cleavage under Catalyst‐Free and Additive‐Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
- College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000, Gansu P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| | - Xinqiang Cheng
- School of Chemical Engineering & PharmaceuticsHenan University of Science and Technology, Luoyang Henan 471003 P. R. China
| | - Weiwei Lu
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
33
|
Motaleb A, Rani S, Das T, Gonnade RG, Maity P. Phosphite‐Catalyzed C−H Allylation of Azaarenes via an Enantioselective [2,3]‐Aza‐Wittig Rearrangement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abdul Motaleb
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| | - Soniya Rani
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| | - Tamal Das
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| | - Rajesh G. Gonnade
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| | - Pradip Maity
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| |
Collapse
|
34
|
Proctor RSJ, Phipps RJ. Recent Advances in Minisci‐Type Reactions. Angew Chem Int Ed Engl 2019; 58:13666-13699. [DOI: 10.1002/anie.201900977] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Rupert S. J. Proctor
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J. Phipps
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
35
|
Wang P, Yang Z, Wang Z, Xu C, Huang L, Wang S, Zhang H, Lei A. Electrochemical Arylation of Electron‐Deficient Arenes through Reductive Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pan Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Zhenlin Yang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Ziwei Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chenyang Xu
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Lei Huang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
36
|
Motaleb A, Rani S, Das T, Gonnade RG, Maity P. Phosphite-Catalyzed C-H Allylation of Azaarenes via an Enantioselective [2,3]-Aza-Wittig Rearrangement. Angew Chem Int Ed Engl 2019; 58:14104-14109. [PMID: 31389132 DOI: 10.1002/anie.201906681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Indexed: 11/11/2022]
Abstract
A phosphite-mediated [2,3]-aza-Wittig rearrangement has been developed for the regio- and enantioselective allylic alkylation of six-membered heteroaromatic compounds (azaarenes). The nucleophilic phosphite adducts of N-allyl salts undergo a stereoselective base-mediated aza-Wittig rearrangement and dissociation of the chiral phosphite for overall C-H functionalization of azaarenes. This method provides efficient access to tertiary and quaternary chiral centers in isoquinoline, quinoline, and pyridine systems, tolerating a broad variety of substituents on both the allyl part and azaarenes. Catalysis with chiral phosphites is also demonstrated with synthetically useful yields and enantioselectivities.
Collapse
Affiliation(s)
- Abdul Motaleb
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Soniya Rani
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Tamal Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Rajesh G Gonnade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Pradip Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| |
Collapse
|
37
|
Wang Y, Yang L, Liu S, Huang L, Liu Z. Surgical Cleavage of Unstrained C(
sp
3
)−C(
sp
3
) Bonds in General Alcohols for Heteroaryl C−H Alkylation and Acylation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaxin Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Le Yang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Shuai Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Lixia Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Zhong‐Quan Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| |
Collapse
|
38
|
Tian WF, Hu CH, He KH, He XY, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Org Lett 2019; 21:6930-6935. [DOI: 10.1021/acs.orglett.9b02539] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan-Fa Tian
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, P. R. China
| | - Chun-Hong Hu
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Ke-Han He
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Xiao-Ya He
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
39
|
Proctor RSJ, Phipps RJ. Neue Entwicklungen auf dem Gebiet der Minisci‐Reaktion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900977] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rupert S. J. Proctor
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW Großbritannien
| | - Robert J. Phipps
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW Großbritannien
| |
Collapse
|
40
|
Ghosh P, Kwon NY, Han S, Kim S, Han SH, Mishra NK, Jung YH, Chung SJ, Kim IS. Site-Selective C-H Alkylation of Diazine N-Oxides Enabled by Phosphonium Ylides. Org Lett 2019; 21:6488-6493. [PMID: 31373494 DOI: 10.1021/acs.orglett.9b02365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of alkylated diazine derivatives is important for their practical utilization as pharmaceuticals and for other purposes. Herein, we describe the metal-free site-selective C-H alkylation of diazine N-oxides using phosphonium ylides that affords a variety of alkylated diazine derivatives with broad functional group tolerance. The utility of this method is showcased by the late-stage functionalization of a commercially available drug such as varenicline. Notably, the sequential C-H alkylation of pyrazine N-oxides for the total synthesis of a pyrazine-containing natural product, paenibacillin A, highlights the importance of this method.
Collapse
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sangil Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Saegun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang J Chung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - In Su Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
41
|
Cheng X, Shan J, Tian X, Ren YL, Zhu Y. Benzylation of Arenes with Benzyl Halides under Promoter-Free and Additive-Free Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Jiankai Shan
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| | - Xinshe Tian
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| |
Collapse
|
42
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
43
|
Zhao H, Jin J. Visible Light-Promoted Aliphatic C-H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent. Org Lett 2019; 21:6179-6184. [PMID: 31120260 DOI: 10.1021/acs.orglett.9b01635] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild, practical method for direct arylation of unactivated C(sp3)-H bonds with heteroarenes has been achieved via photochemistry. Selectfluor is used as a hydrogen atom transfer reagent under visible light irradiation. A diverse range of chemical feedstocks, such as alkanes, ketones, esters, and ethers, and complex molecules readily undergo intermolecular C(sp3)-C(sp2) bond formation. Moreover, a broad array of heteroarenes, including pharmaceutically useful scaffolds, can be alkylated effectively by the protocol presented here.
Collapse
Affiliation(s)
- Hong Zhao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
44
|
Huang CY, Li J, Liu W, Li CJ. Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. Chem Sci 2019; 10:5018-5024. [PMID: 31183051 PMCID: PMC6530541 DOI: 10.1039/c8sc05631e] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022] Open
Abstract
Minisci alkylation is of prime importance for its applicability in functionalizing diverse heteroarenes, which are core structures in many bioactive compounds. In alkyl radical generation processes, precious metal catalysts, high temperatures and excessive oxidants are generally involved, which lead to sustainability and safety concerns. Herein we report a new strategy using diacetyl (2,3-butanedione) as an abundant, visible light-sensitive and "traceless" hydrogen atom abstractor to achieve metal-free cross-dehydrogenative Minisci alkylation under mild conditions. Mechanistic studies supported hydrogen atom transfer (HAT) between an activated C(sp3)-H substrate and diacetyl. Moreover, with the assistance of di-tert-butyl peroxide (DTBP), the scope of the reaction could be extended to strong aliphatic C-H bonds via diacetyl-mediated energy transfer. The robustness of this strategy was demonstrated by functionalizing complex molecules such as quinine, fasudil, nicotine, menthol and alanine derivatives.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Jianbin Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Wenbo Liu
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
45
|
Li Z, Wang X, Xia S, Jin J. Ligand-Accelerated Iron Photocatalysis Enabling Decarboxylative Alkylation of Heteroarenes. Org Lett 2019; 21:4259-4265. [PMID: 31090423 DOI: 10.1021/acs.orglett.9b01439] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild, practical protocol for the decarboxylative alkylation of heteroarenes has been accomplished via iron photocatalysis. A diverse range of carboxylic acids readily undergo oxidative decarboxylation and then couple with a broad array of heteroarenes in this transformation. The photoexcited state lifetimes of iron complexes are typically much shorter than those of iridium and ruthenium complexes. Here we describe our effort on iron photocatalysis by utilizing the intramolecular charge transfer pathway of iron-carboxylate complexes.
Collapse
Affiliation(s)
- Zhenlong Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiaofei Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Siqi Xia
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
46
|
Kuwana D, Ovadia B, Kamimura D, Nagatomo M, Inoue M. Installation of O‐Heterocycles to N‐Heteroarenes via an Et
3
B/O
2
‐Mediated Radical Reaction of α‐Alkoxy and α‐Alkoxyacyl Tellurides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daiki Kuwana
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Benjamin Ovadia
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Daigo Kamimura
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
47
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
48
|
Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chem Sci 2019; 10:3632-3636. [PMID: 30996957 PMCID: PMC6432612 DOI: 10.1039/c8sc05689g] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Classical 1,4-dicarbofunctionalization of 1,3-enynes employs organometallic reagents as nucleophiles to initiate the reaction. We report a copper-catalyzed 1,4-alkylarylation of 1,3-enynes with alkyl diacyl peroxides as masked alkyl electrophiles and aryl boronic acids as nucleophiles, selectively affording structurally diversified tetrasubstituted allenes under mild conditions. Mechanistic studies suggest that an allenyl radical might be involved.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Xiaotao Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Shengmin Hu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Daqiang Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| |
Collapse
|
49
|
Mao S, Luo K, Wang L, Zhao HY, Shergalis A, Xin M, Neamati N, Jin Y, Zhang SQ. Metal-Free C-2-H Alkylation of Quinazolin-4-ones with Alkanes via Cross-Dehydrogenative Coupling. Org Lett 2019; 21:2365-2368. [DOI: 10.1021/acs.orglett.9b00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
50
|
Samanta S, Hajra A. Mn(II)-Catalyzed C–H Alkylation of Imidazopyridines and N-Heteroarenes via Decarbonylative and Cross-Dehydrogenative Coupling. J Org Chem 2019; 84:4363-4371. [DOI: 10.1021/acs.joc.9b00366] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|